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PREFACE

This manual 1 mtended as an introduction to programming in HAL/S. The reader is
presumed to have some experience using one or more procedure-oriented languages such as
FORTRAN or PL/I The book may be used either as part of a self-study program or in con-
junction with a course of twenty to forty classroom hou's over a period of one to two
weeks.

The matenal is organized as 4 tutorial rather than as a reference book. Furthermore, it
1s intended as an itroduction to HAL/S rather than as a definitive exposition. After com-
pleting the course, the reader should refer to the HAL/S Language Specification or the
HALIS Programmer’s Guide for a more detmled and complete description of the language.

It ts impossible to give proper credit to all the people at NASA. IBM, and Intermetrics
who have contributed to this book Special recognition must go to Josephine Jue. John
Schwartz, and Al Mandehn for their detaled review of several drafts of the manuscript, to
Gary Singer for performing the final editing and page layout, and to Valenie Censabella who
typed all of the manuscripts and got the majority of the exercises through the HAL/S-360
compiler,

Support of the HAL/S language, compilers, and documentation 1s an ongoing etfort of
NASA and Intermetrics. Comments on this manual will be appreciated and will be incor-
porated into subsequent editions. All comments or inquiries should be addressed to

HAL/S Language Group

NASA- Jet Propulsion Laboratory

Programming Development Section

Mail Stop 124-241

4800 Oak Grove Drive

Pasadena, CA 91103

(21% 354-3289 Michael J. Ryer

September 1978
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PREFACE TO THE SECOND EDITION

The first edition of Programming in HAL/S has found a welcome home 1n the growing
community of HAL/S users. It has proven to be quite useful as both a teaching aid. and for
the independent study of HAL/S.

This edition contains a new chupter on FIXED data types and a new appendix on
FORMAT 1/O. A number of corrections have also been incorporated .nto the text.

Special thanks for work on these chapters go to Steve Gallant, Mark Davis, Bruce
Knobe, and Fred Martin,

September 1979



Section

1.0

2.0

30

4.0

5.0

6.0

T

Vil

T.uBLE OF CONTENTS
Page
INTRODUCTION ... e et 1-1
1.1 Learning HAL/S After FORTRAN . .. ...... ... ... ... ... ..... 1-1
1.2 HAL/S Contrasted With Other High Order Languages ............ 1-2
1.3 HAL/S Contrasted With the Assembly Language ................ 14
1.4 Introductiontothe MamnText .. ............................ 1-5
READING, WRITING, AND ARITHMETIC ....................... 2-1
2.1 WritingaHAL/SProgram .. ........ ... ..... ... .. ... ........ 2-1
2.2 Arithmetic Expressions ........... ... .. . . i 2.5
2.2.1 ACompiledExample ................ .. ... .... .. 29
2.3 DeclaringData ...........c.0. it e 2-11
2.4 Executable Statements .. .. ............c.ccuiniiiiiiiia 2-15
MORE BASICS ... 3-1
3.1 Bullt-InFunctions ..... ... ... .. e 3.1
3 SUDSCIIPES . . ottt e s 3-7
3.3 The REPLACE Statement . .............. ... 00iviianennnes 3-12
3.4 The Precision Attributes . . ................c.cvitiierrienn.. 3-15
3.5 Summary of the Arithmetic Expression .. .................... 3-19
CONDITIONALEXECUTION .. ... ... e 4-1
4.1 IF... THEN...ELSE ....... ... . 0 i, 4-1
42 TheDO...ENDGroup..........0o i 49
4.3 BOOIEANS . . ... oot e 4-16
44 DOCASEandGOTO ... ... it 4-20
LOOPS ..o e e e 5-1
5.1 The Iterative DO FOR Statement .. . ............. .. ..., S-1
5.2 The Discrete DOFOR Statement ...................c.cvvun.. 5-6
53 TheWHILEClause ... ... ... ... 0 it 5-7
54 TheUNTILClause .......... ittt 5-5
5.5 EXITand REPEAT ........ ... ... ittt s-11
ARRAY S L e e 6-1
6.1 Arraysof Integersand Scalars ............ ... ... ... .. ... 6-1
6.1.1 Additional Examples ................ ... 6-6
6.2 Operationson Entire Arrays. . ..... ...t nnvnnenn.. 6-10
6.3 Arraysof OtherDataTypes .............iiiieinennnnnrins 6-15
6.3.1 Arraysof BOOLEANs ............ .. ... .. .iiivnann. 6-19
6.4 Functions of ATTays .. .......oviriiniin i iiinanennns 6-22
6.4.1 ShapingFunctions .............. ... iiiiiiinnennn. 6-23

‘)“‘-cwm '“ BLAIM. NCT PRLY .,



o

o g

Vil

Section

7.0

8.0

9.0

10.0

11.0

12.0

TABLE OF CONTENTS (Continued)

Page
PROCEDURES AND FUNCTIONS .. ... ... ... i 7-1
7.1 User Defined Functions .............. ... ..ot 7-1
7.2 Argumentsand Parameters .. ... ... ... .. el 7-7
7.3 Procedures . ... ... ... e 7-9

7.4 ScopingRules. .. ... . e e 7-13

7.5  ARRAY("). AUTOMATIC.and NONHAL .................. 7-14

7.5.1  Automatic Initialization . . . ............. ... ... ... 7-15

7.5.2 The NONHAL Attribute ....... .................. 7-18
1/JO AND CHARACTERSTRINGS ............ ... . ... iiiinn. 8-1
81 TheWRITE Statement .. ... ... i 8-1
8.2 1/OControl Functions ............ (..cooiiiriiinenann. 8-6
8.3 The READ Statement . ... ... ... .. ... ciuiiiniinnn. 89

84 Chamcter Strings .. ... ... e e 8-12

85 OtherHAL/SI/OConstructs . ..............c.civininn.n. 8-18

851 The READALL Statement . ........................ 8-19

8.5.2 TheFILE Statement .. ... ... ... ... it 821

8.3.3 Avionics /0 ... . e 8-
STRUCTURES . . ... e e 9-1
9.1 Declaring and Referencing Structures .. .. ................... 9-3
9.0 TheStructure Template . ......... .. .. it 9-6

9.2.1 TemplateMatching............ ... .. ... ... ... 9-11

9.3  Multi-Copied Structures .. .......... . .. i 9-12

9.4 DENSE, RIGID, and “Unqualified™ ... .......... ... .. ... ... 9-18

9.4.1 The DENSE Attribute .......... ................. 9-18

94.2 TheRIGID Attribute .. ... .................c.ovv.. 9-20

9.4.3 Unqualified Structures ... ... e e e 9-21
ERROR RECOVERY ... .. ittt iie e 10-1
10.1 The ONERROR Statement ...................ciiiivan... 10-2
10.2 Deactivating ErrorHandlers .. .................... ..ot 10-8

10.3 Other Error Control Constructs .. ...........ccovvuuneenn .. 10-12
STRUCTURING LARGE APPLICATIONS ............ ..ot 111
11.1 The Unitof Compilation ............. oo iiiiiiinin, 111
11.2 Building a Program Complex ..............cciviiiiienn... 11-6

11.3 Multi-Programming Considerations . . ..................c..... 11-13
REAL-TIME STATEMENTS . ... ... . it i ittt 12-1
12.1 The SCHEDULE Statement . . ...........c.iivivinnnn... 12-2
12,2 EventVariables ..... ........c.oiitiiiiiiiiiininnnnnns 12-8

12.3 Other Real-Time Statements . ... ..............oiiiennnn 12-16

[N



.

AR
e

." »

TABLE OF CONTENTS (Continued)

Section Page
130 SYSTEM PROGRAMMING AIDS .. ... .. ..., . ... .. ..., 13-1
T3 Bt StnNgs . e e 13-1 v
13.2 Name Varables ... ... 0.0 . ... oo L P KR .
133 Listsand QUoues ... L1315 ~ee -
14.0 FIXEDPOINT .. ..., .. o o 14-1
141 Introduction. ... .. .. . e e 14-1
4.2 Scahing .. . o s o e 14-2
143 Expressions ... . .. i i e e 14-3
144 Shapmg Functions .. ... .. .. ... ... . . .. 144
148 VECTORFand MATRIXF .. .. .. ... o 14-5
14.6 Scaling Revisited .. ... ..., ... ... oo, 14-5
APPENDIX A . A-l
APPENDIX B .. o e e B-1
APPENDIX C oo e e e C-1
APPENDIX D ... o e D-1
APPENDIX E e e E-1
INDEX o e e I-1

Vo,



Learning HAL/S after FORTRAN -1

1.0 INTRODUCTION

HAL/S is a computer programming language; it is a representation for algorithms which
can be interpreted by either a person or a computer. HAL/S compilers transform blocks of
HAL/S code into machine language which can then be directly executed by a computer.
When the machine language is executed, the algorithm specified by the HAL/S code (source)
is performed. This document describes how to read and write HAL/S source.

HAL/S was developed principally for real-time aerospace programming. lts most signifi-
cant use to date has been the production of the NASA Space Shuttle Flight software. This
intended application imposed three major constraints on the language design: reliability,
efficiency, and machine-independence. Reliability and efficiency are obvious requirements
of flight software. The machine-indepenuence requirement stems from a desire to minimize
programmer training, to transfer blocks of proven code between distinct NASA projects,
and to reduce the dependence on flight hardware availability.

Within these con<traints, the language provides simple and intuitive constructs for func-
tions commonly performed by aerospace applications, such as vector/matrix arithmetic.
More generally, HAL/S is suitable for real-time process control applications, particularly
where mathematically-oriented algorithms are involved. While the language is “‘tuned” for
aerospace, the machine-independence and reliability aspects of HAL/S make it attractive for
a variety of applications which do not perfectly match the original intent.

It may seem strange to some readers to attribute reliability to a programming language
rather than to programs written in that language. This viewpoint is an outgrowth of the
study of structured programming. A reliable program produces correct results for all pos-
sible combinations of inputs. Since it is usually impractical to exercise the program on all
possible inputs, prograths must be verified by induction. The assertion is made that if the
program passes a particular set of tests, then the program will produce correct results for
any set of inputs. This assertion is always based on an understanding of the program’s
internal workings. If the logic of a program is misunderstood, the results of verification
cannot be relied upon.

Although it is difficult to assess the psychological implications, certain high order lan-
guage constructs (e.g., the GOTO) are knowr. to be symptomatic of unreliable programs.
These constructs have been eliminated or highly restricted in HAL/S.

1.1 LEARNING HAL/S AFTER FORTRAN

HAL/S is simi’ar to FORTRAN in many ways. The assignment statement is essentially
the same in both languages. The FORTRAN concepts of subroutines, arrays, common
blocks, and library routines all have analogues in HAL/S. Some concepts have been ex-
tended; for example, the FORTRAN statement A»B+C can be used to add either integers
or reals: the compiler generates instructions appropriate to the types of A, B, and C. In
HAL/S, the same concept applies, but A, B, and C may also be vectors, matrices, or arrays
of any type. HAL/S has many more data types than FORTRAN,

E.ery variable used in a HAL/S program must be explicity declared before it is refer-
enced. This is done via the DECLARE statement, which specifies the name of the variable
and its attributes (including its data type or “mode”). The need to declare variables results

N

e b



1.2 Introduction

from the wide vanety of data types in HAL/S. It also allows the compiler to check for mis-
use of data and tu enforce certain programming standards. For example, a FORTRAN pro-
grammer might divide a variable containing alphanumeric character data by the number 256
in order to access the leftmost byte. HAL/S does not allow any arithmetic operations on
character data since such operations usually depend on the particular character code in use
and are thus machinedependent. Instead, individual characters may be extracted from a
character variable by explic't subscnipting. Similarly, binary (logical) data is a distinct data
type. The AND, OR, and NOT operators may be used with BOOLEANS or BIT stnngs, but
not with anthmetic data.

These restrictions may seem awkward at first, but with experience it will become quite
natural to select the appropriate type for each vanable in advance. HAL/S includes con-
structs for data type conversions, but these conversions are needed less frequently than an
experienced FORTRAN programmer might expedt.

Another myjor difference between HAL/S and FORTRAN is in the flow-control (branch-
ing) statements  Structured programming research has had a major impact in this area In
essence, the various forms of GOTO statement have been replaced with more reliable con-
structs. The distinction may be characterized as “flow control by pesting of statements”™
rather than “flow controf by branching”. While this difference of philosophy may make
the transition to HAL/S from FORTRAN more difficult, it can be argued that the HAL/S
form is more English-like and thus move intuitive. Furthermore, using the HAL/S flow-con-
trof constructs instead of GOTOs tends to result in a program which can be read sequentiaily
(from top to bottom). Loops and decisions are expressed explicitly in HAL/S rather than
implied by a convoluted arrangement of forward and backward branches. In any case, most
modern programming languages (including FORTRAN '77) have flow control statements of
the type found in HAL/S.

While the treatment of data types and fiow control are the most fundamental differences
between HAL/S and FORTRAN, the differences in source and listing fonmats aie the most
noticeable. The source format is somewhat freer than in FORTRAN. The output listing
format, however, is not under programmer control at all, Every HAL/S listing is put in a
standard format by the compiler. Each HAL/S statement is placed on a new line und auto-
matically indented to show its relationship to other neighboring statements, Exponents and
subscripts are raised and lowered (respectively) in the listing, and various additional informa-
tion (compiler-generated annotation)is added. Thus, the work of the programmer is reduced,
the indenting is always correct (since the compiler re-computes it every time), and reading a
listing required no knowledge of the individual programmer’s style.

Other major differences between HAL/S and FORTRAN are in the areas of Real-time
interactions, and the interfacing of separately compiled units. These advanced topics are
thoroughly discussed in chapters eleven and twelve of the text.

1.2 HAL/S CONTRASTED WITH OTHER HIGH ORDER LANGUAGES

The differences between HAL/S and other high order languages arise trom the charac-
teristics of aerospace applications, and the time-frame in which HAL/S was designed. HAL/S
was developed between 1970 and 1972, Since that time, changes which would invalidate
existing HAL/S code have been resisted. Thus, some recent advances in language design have
not been incorporated. Note, however, that the language did evolve from a thorough study

-
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A1 5 Contrasted with Other High Order Languages -3

of the existing languages. Most of the concepts which have been developed since that time
have not been implemented in any operationd! (rather than expenimentab) language. When
these concepts (e.g . data abstraction) have been proven outside of the umversity environ-
ment, they may be incorporated in HAL S Thore is an estabhished language control board
which continuously reviews the state of the art ind suggests and/or approves changes to
HAL/S

Some features which were 1n common use at the timie were exc'oded due to efficiency
considerations  These include recursion and dynanie storage allocation In addition to the
overiiead normally associsted with these facihities, a rehability problem 1s avoided by therr
exclusion Because of these and other exclusions, the total storage requirement ot a HAL/S
application can be exactly determined betore execution starts Consequently, HAL/S pro-
grams can never run out of storage duriag execution, This safety feature is essential in
acrospace applications.

Other constructs, such as the full generality of the PL/1 error recovery system, have also
been omitted for reasons of efficiency

HAL/S also lacks sophisticated facilities for dealing with ground-based peripheral devices
(printers, plotters, ete.). Character-oriented 1/O statements are provided for testing and
development, but many 1/O facilities provided by ground-based operating systems are mn-
accessible from HAL/S This is due to the design emphasis on flight software, and the lack
of standardization of the concepts and facilities of ground-based operating systems

HAL/S stresses readability rather than “writability™  This approdach acknowledges the
fact that a program is wntten once (generally by one person), but is read many times (and
often by many people). For instance, there are no abbreviations for HAL/S keywords.
Furthermore, all of the keywords are “reserved”. No confusion can anse from variable
nasnes which duplicate keywords, because no such re-use of a keyword is allowed.

On the other hand, HAL/S includes some facilities which orher languages lack. Vector/
matrix arithmetic has already been mentioned: HAL/S vectors and matnices are distinct
from arrays, and are supported by a full sct of operations. These include cross and dot
product, as well as addition, subtraction, multiplication, division, and exponentation. All
are defined according to the usual rules of mathematics.

Although HAL/S contains features abstracted from a variety of languages, it exhibits a
considerable uniformity. For instance, a portion of a variable is always selected by subscript-
ing, whether the variable is a 3-vector, a character string, or a set of bits comprising a
computer word.

Finally, there is one difference whicli 1s not exhibited in the language per se. This may
be termed the “'system’ asp *ct of HAL/S In addition to the listing and a machine-language
“object module’’, the compiler generates a machine-readable randoin access f.le containing
information about every variable and statement in the program. This file is then used by
various statistics and diagnostic packages. Furthermore, some compilers can optionally in-
sert “*hooks™ (diagnostic package interfaces) in the generated code. These interfaces are used
in a functional simulation (FSIM) execution mode.
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FSIM is a tool which allows flight code to be developed and tested on ground-based
computers. It includes 3 model of the flight operating system, and simulates the timing of
the fight computer It also includes provisions for the simulation of avionics 1/G This is
done in such a way that flight code can be executed on a grounc-based ¢ mputer without
any source-Jevel changes whatsoever. Debugging commands are entirely based on the HAL/S
source, the program can be debugged without knowing any details of the ground computer
hardware. More information regarding the compiler and reiated software can be found in
Appendix B of this manual.

1.3 HAL/S CONTRASTED WITH THE ASSEMBLY LANGUAGE

This manual is primarily intended for experienced high order language programmers, this
section presents some brief background information for programmers whose experience has
been primarily in assembly language

The term "high order language™ refers to languages in which a line of source produces a
variable number of machine instructions. Some readers may initially view HAL/S as a tool
for specifying machine instructions more compactly.

Many assemblers allow expressions, such as “A+B/C"" in certain contexts where a num-
ber is needed. The symbols used in these expressions must have values known to the assem-
bler; i.e.. A, B, and C must be equated to constants in some way or must be macros which
expand to constants or literals. The computation is done at assembly time and the output ot
the assembler contains just the value of the expression.

This facility is present in HAL/S. There is, however, an important distinction: if the
values of the symbols used in a HAL/S expression are not known at compile-time, then ma-
chine instructions are generated to perform the computation at run-time. Most of the com-
putation in g HAL/S program is specified by means of expressions. There are no ADD or
SUBTRACT HAL/S statements, all arithmetic is done with operators (e.g., "+, ", etc.).
The "+ operator will add integers, scalars, vectors, matrices or arrays of any of these basic
types. The same operator performs both single and double preciston arithmetic. Thus, the
compiler “decides” what particular machine instructions are appropnate to add the specified
operands together. This is one type of bookkecping that is automated by the compiler.

This approach illustrates another meaning of “high order language”. the programmer
is farther removed from the details of the computer hardware. The programmer specifies
a function (¢g., addition) and the compiler maps it into the computer’s repertoire (e.g..
LOAD, ADD, STORE;. All addressing and instruction usage decisions are also the province
of the compiler.

Unlike a macro assembler, the compiler does not always generate the same instruction
sequence for a given source statement. It can “‘remember’ whether a variable is still in a
register from some prior statement, and, if 30, avoid re-loading it. The compiler may also
move an entire computation out of a loop if none of the variables referenced are modified
within the loop. Generally, the compiler is free to make any re-arrangement of the program,
provided that the same results will be produced from its execution. This means that jt is
nearly impossible to predict what machine instructions will be generated when & particular
HAL/S statement is compiled. Hence, the best policy is to specify the desired function in
the most intuitive way and ignore the mapping into machine .nstructions
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There v no way to reference a particular machme register or word o memory n a
HAL!S program Operatiens are performed on variables and constants rather than addresses
and registers Al such assignments are made by the compiler A large class of potential
programmer errors (¢ g . use of the wrong register) 1s avorded by this approach

1.4 INTRODUCTION TO THE MAIN TEXT

The tollowing chapters Jescribe the HAL'S Language, 3 tew advanced teatures are
omitted, but must of the language v covered, including all ot the trequently used con-
structs  Fhos manual is tntended for sequential reading The HAL/S Language Specification
Is more appropriate for use Jas a reference, since 1t gs concise, complete, and fully crow-
referenced  This manual, bemng tutonal in nature. desernibes each facet of the language in
terms of the matertal presented in previous chapters anteractions between separate con-
structs are not discussed until each construct has been described separately ach chapter
v g prerequisite to the next but no other knowledge of HAL/S 18 assumed.

Another document, the HAL/S Programmer’s Guide, 1s alvo tutonal n nature, but
cach chapter v self contataed  material 18 repeated nstead of referenced  Hence, the
programnier’s guide may be the best chowe for “brushing up™ on some particular aspect
of the language.

Fhe nformation preded to compuie (hnk, run and debug) a HAL/S program. once 1t
s written, can be found in the HAL/S User's Manual for the particular compiler in use
These documents  abo  desentbe  vanations among  compilers  (1e .  implementation
dependencies)

The chapters which follow explain HAL/S pnmanly by ¢xample The torm of cacn
construct ix always shown by exampile, the examples are 0 constructed that the micaningy
of new torms can he deduced. Thosw who learn cauly from examples may find portions ot
the Foglish explanation redundant In every case, the exainples are intended to be read from
top to bottom when they are first referenced, rather than after the new constructs have
been explained

The occassonal tables and hists need not be memorized. It the exercises can be done
after one reading, furtner study is not needed The most nnportant constructs are used
freely in subsequent chapters, thus providing a continuous review of earlier matenal It
would be difficult to learn HAL/S without wnting any HAL/S programs, about one-half of
the exercises require programming Answers to all are given in Appendix (.

Computer words which are not defined herein (e g, algorithm. program) may be jaken
at ther conventional meanings. In some case, a more precise HAL/S meaning is given later
Definitions are denoted by italics as in ““the form and meaning of 4 language construct are
generally termed its © nzax and semantics, respectively

Chapter Two contains enough information to write a HAL/S program that really does
something Chapter Three completes the topics introduced in Chapter Two, primarily addi-
tional forms of the arithmetic expression. The rematning chapters discuss flow control, addi-
tional data types, and advanced topics sich as real-time programming
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2.0 READING, WRITING, AND ARITHMETIC

The nasic rules for wnting a HAL/S program are shown in the exarinie below

SIMPLE. PROGRAM,
C CODF IN THIS TYPEFACE IS
HAL/S SOURCH

DECLARE Pl CONSTANT (3 14159260),
DECTARF R SCALAR:

REAIXS) R.
WRITE(6) PI R '*2,
CLOSE SIMPLE:

~

2.1 WRITING A HAL/S PROGRAM

The example above consists of six HAL/S statements and two comments. The ‘irst state-
ment serves to tllustrate several conventions used throughout the language.

I. Every program begins with a labeled PROGRAM statement.
2. HAL/S statements are labeled by preceding them with an «” 'atifier and a colon.
3. Al HAL/S statements end with a semivolon.

The two lines following the PROGRAM statement are comments. For further clanfica-
tion, additional hines could be used. Any hne contamning a C in column one is a comment.
Con.ment hines may be placed anywhere in 4 program.

The next statements are DECLARFE statements, These statements form the declare
group, which precedes the executable statemints in every program. Variables are created via
the DECLARE statement. Variables must always be declares before they are used. READ
and WRITE are executable statements. The numbers § and 6 1n parentheses are channel
numbers. They control the routing to and from an external device. Many other executaole
statements will be introduced in later chapters. CLOSE, ike PROGRAM, is a delimiting
statement: It is the last line of every program. The block delimiting statements are further
discussed in “Fiptor seven. This chapter stresses the DECLARL statement and the assignment
stafement (not shown above).

In this simple example each statement could be punched onto a card just as shown
HAL/S source is free format: There are no rules about particular card columny except
column one. Column one must contain one of the characters E. M, S, C, U or blank. Normal
statements are written with a blank in column one. “C" is used for comments, the use of
the other characters will be discussed later.

When a program is stored on disk or tape the format is the same. Column one is defined
a8 the first character of a record or the character following an end of line code. With this
exception, the arrungement of HAL/S source on cards or records does not affect ity inter-
pretation by the compiler. The example above could also be put as

~

,l"
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2-2 Reading, Writtng, and Arithimenc

SIMPULE  PROGRAM,
¢ THIS IS HAL/S SOURCEH
DECLARE Pl CONSTANT (3.14159206); DECLARF
R SCALAR: RFAD(S) R, WRITE()
Pl R**2: CLOSE SIMPLE:

Longer programs are not always written correctly the first tume Placing only o state-
ment on a tine makes later modifications much easier*

Since every statement ends with o semiolon, no additional convention is needed for
long statements, /t i the senncolon rather than the end of a line that marks the end of a
statement To put a comment after a statement on the same line, the */** form can be used.
For instance:

READ(SIR, /*OBTAIN RADIUS*/
WRITE(@) P1 R**2. /* ** MEANS EXPONENTIATION */

This type of comment may be placed anywhere a blank is allowed (except in column
one). It consists of any string of characters beginning with /%" and «nding with **/", Ay
the example shows, “** uand **/* may be used within the string in any combmnation other
than ** /™,

The WRITE starement could also be coded as

column |
i
¥ a2
M WRITE(6) Pl R,

Here, column one is used to distinguish between main and exponent lines, Some implemen-
tations of HAL/S accept a two dimensional input format in which exponents and subscripts
are indicated by their positions. Multi-ine mpue is generally not used however, since enter-
g and mamtaining source in this form is cutnbersome under common editors or on cards.
The compiler produces hstings in the multidine format but all souwrce w this book will be
shown in the single-line form.

The preceding paragiaphs gescribe the placement of statements in a file or on cards.
Neat we will discuss the format ot individual statements,

The PROGRAM and CLOSE statements cach contain the keyword, an identifier, and
punctuation, Keywords are the “verbs” in HAL/S. Each has a predefined meaning, and
s0 cannot be used as a variable name. A complete list of keywords is given in Appendix
D. All of the HAL/S keywords ase made up of the letters A through Z. Except for the
ARCTAN? function, no numerals are used. The underscore, or “break character’™ ()i
not used in any HAL/S keyword.

*Some debugging systems sllow a breakpoint to be set at the statement on a particular card (specified by
sequence number). Placing only one statement per line also simplifies this usage.

crt
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Writing a HAL/S Program 2-3

Blanks, or spaces, are significant in HAL/S. For instance, DECLARER is a valid identi-
fier. It would never be interpreted as DECLARE R. Blanks must be coded between key-
words and identifiers in any combination. Except in comments and character strings,
however, therc is no difference between one blank and many: blanks.

The compiler sees its input as a continuous stream of characters, i.e., the concatenation
of columns 2 through n of the entire input file. This input is split into words at the punctua-
tion: blanks, commas, semi<colons, etc. The punctuation is in two categories: delimiters
such as :, . and blank, and operators such as +. —, blank, and /. When a blank appeais
between two identifiers or expressions it serves as the multiplication operator. Otherwise,
it 1s a delimiter.

Using the punctuation, the compiler breaks its input into a series of rokens. Tokens are
of four types:

Keywords such as DECLARE
Identifiers such as R

L

Operators such as ** or blank
4. Lirerals such as 3.14159266

Each HAL/s statement is defined in terms of these token types. For instance, the basic
DECLARE statement consists of the keyword DECLARE followed by an identifier
followed by artributes. The attributes consist of keywords and literals. Like all statements,
DECLARE ends with a semicolon.

Identifiers consist of variable names and labels. The identifiers in the sample program
are SIMPLE, Pl, and R. Identifiers may be from one to thirty-two characters in length,
and composed from the letters A-Z, the numerals 0-9 and the underscore, The first character
nust be a letter; the last may not be an underscore. Selection of names is entirely up to
the user:

DECLARE SIGMA CONSTANT (3.14159);

is syntactically correct. The underscore may be used in an identifier to write an identifier
composed on more than one word: DELTA_V and TIME_TO_GO are valid identifiers.

There is a trade-off in identifier lengths: Very short identifiers, such as RLNGL, make
for crvptic code, whereas very long identifiers, such as CURRENT_VEHICLE_ROLL _
ANC LE, make it hard to find operators and match up parentheses in expressions. Identifiers
may not be started on one card and continued on the next. Since the card boundary serves
as a delimiter equivalent to a space, long names car be awkward.

HAL/S does encourage self~documenting programs through meaningful identifier names.
This author’s preference for a mixture of long and short names is generally displayed
throughout this manual. Sometimes this text uses underscores and numerals in identifiers
to distinguish them from keyw rds. The HAL/S keywords cannot be used as identifiers. A
few to be careful of are: SUM, IN, SET, LINE and TRACE. None of the keywords are less
than two characters,
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The third type of token s an operator. HAL/S mcludes logical and character operators
as well as the arithmetic operaton hsted mn Section 2.2,

The fourth type of token is a hteral There are arithmetic. character, and it literals,
though only anthmetic literals are of concern now. Throughout this book, arithmetic
literals arce called simply numbers

While HAL/S has both integer and scalar datatvpes, it does not distinguish between
nteger and scalar numbers. 3" 1s completely equivalent to *3.0™. “3.14159™ is completely
cquivalent to *314159/100000", and to “314159E-57, “314159E4" and so forth. The
character F is used in numbers to indicate scientific notation. The form “314189F-8" s
mterprefed as

314159 v 10 3
or
(31415010 *( 5).

Thus, numbers can be written as a sequence of digits with or without a decimal point,
optionally followed by the letter E and one or more digits. The minus sign () is used tor
negative numbers and exponents, The HAL/S Language Specification describes the use of
other exponent letters to specify powers of two or sixteen instead of ten.

No blanks may appear in g number, Blanks must separate numbers from adjacent key-
words, identifiers and literals.

The statement,
DECLARE Pl CONSTANT@3+1/7);

1s completely valid, 3 + 1/77 s considered a member rather than an expression. An ex-
pression which contains only numbers, CONSTANTS, and the basic arithmetic operators is
said to be computable at compile-time. Instead of generat'ng code to evaluate such an
expression at runtime, the compiler will convert the expression to a simple number. Only
the value is kept at runtime; the addition and division in “3 + 1/7" are performed during
compilation. When this manual refers to numbers, any expression hich can be reduced to
a number during compilation is included.

In summary, a HAL/S program begins with a labeled PROGRAM statement and ends
with a CLOSE statement, In between ts a declare group followed by executable statements,
These statements may be arranged in any convenient way on successive cards or lines, pro-
viding that column one 1s blank. All statements must end with a semi-colon. Both comment
lines and comnients within statements are allowed. Statements consist of a sequence of
tokens separated by blanks or other punctuation; the tokens are of four types; keywords,
identifiers, operators, and literals, Most of the HAL/S keywords and operators will be de-
scribed later. The rules for forming and recognizing tokens of cach type have been pre-
sented here,
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Exercises

2.1A  Some of the following are valid HAL/S tokens; some are not, Identify the valid
tokers, and state the type of each.

Note: Appendix D contains a complete list of HAL/S keywords.

a) TEST_TIME
b) CHARACTER
¢) TRY AGAIN
d) 7.1E-14

e) X )

f) 1ABC

g8) DEC_LARE
h) INITIAL

i) ALTITUDE_
i) TRUE

k) 4.2.1

1) QUITE_A_LONG_STRING
m) 10000000

2.2 ARITHMETIC EXPRESSIONS

Like most high order languages, HAL/S allows numeric computations to be specified
in a form very similar to ordinary mathematical notation. For instance, the equations below

should be quite recognizable in their HAL/S forms:
AREA _CIRCLE = Pl R**2; [*CIRCLE®/
AREA_TRIANGLE = 1/2 B H; /*TRIANGLE®*/
PYTHAGORUS = (H**2 - B**2)**(1/2), /*PYTHAGORUS®*/
AREA_TRAPEZOID = H(A+B)/2: [*TRAPEZOID*/

This example illustrates the forms of some familiar equations in HAL/S.

This example shows four assignment statemenis as well as a8 number of arithmetic ex-
pressions. The assignment statement is much as in other languages: the value of the expres-
sion on the riht of the equals sign is assigned into the variable on the left. This section is
primarily concerned with the evaluation of the expression on the right hand side.

The example shows addition, subtraction, multiplication, division and exponentiation
operators. As in mathematical notation, multiplication is indicated by adjacent factors: no
special character is used to stand for multiplication. Sometimes the blank is referred to as a
multiplication op.-ator, since adjacent identifiers must always be separated by a blank.
However, it is the adjacency and not the blank that indicates multiplication. For instance,
“PI R**2” can be written without a blank as “PI(R**2)"” or “(PI)R**2" or R(P)R".
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The other basic operators contain no surprises. The hyphen or minus sign is used for
both subtraction and negation. Parentheses control the order of vahuation in the usual way.
The table below shows the . ajordifferences between HAL/S and mathematical conventions:

Mathematical Notation HAL/S Expression
ab abd
Ix 2 x
axn-! n x**n-1)
—(c+d) —{c+d)
25
(1!2) (atb)/(c—-dN**2 5
¢-d
=% CY-2ab)
a(x+1) v (x+])

Mathematics defines several conventions to reduce .he need for parenthesis in expres-
sions. For example,

AX+BY

is always interpreted as the sum of two terms, (A X) + (B Y) rather than as the product of
three factors, A(X+B)Y. These conventions are stated in terms of the order of evaluation of
various constructs, In particular, multiplication and division are performed before addition

and subtraction. HAL/S incorporates these rules by defining a precedence for each operator,
as shown below:

Precedence of Operators
b exponentiation first
¥ multiplication
/ division
+ addition

- subtraction

Note that multiplication is done before division rather than at the same time as in some
languages.

G'ven this precedence, the expression:

AX + BX - C

is evaluated correctly when written in HAL/S without parenthesis:

AX**2+BX -C

.
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The equivalent form with parenthesis is:
((A(X**2)) + (B X)) - C.

If strict left-toright evaluation was desired, this could only be indicated by parentheses, as
shown below:

(A X)**2 + B)X - C.

When an expression contains several operators of the same precedence, they are
evaluated from left to right for all operators except for exponentiation and division. These
are evaluated right to left. To see why this is true, consider the definitions below:

oyl = x(YDH

A
B=aAS
C B

The first expression is written:
X**Yys**Z,

IfX=4,Y=3,and Z = 2, this is:
4#e3%%) = 4%4(3%%2) = 49

if the natural sequence was overridden via (4*%3)**2, 642 would be produced. Likewise,
A/B/C is naturally interpreted as A / (B/C), which is indeed equal to A(C/B).

Other operators of equal precedence are evaluated from left to right. Addition and
multiplication are commutative and associative, so the order does not matter except for pre-
cision analysis. Subtraction, however, is neither, and the order of evaluation does affect the
results, The HAL/S expression,

A-B-C
is interpreted as (A—-B) —C.

The distinction between numbers and expressions is somewhat blurred in HAL/S. As
already stated, any expression that can be computed in advance (during compilation) can
be used wherever a number is required. Furthermore, a negative number (c.g., 1) is
actually an expression, containing the number | and the negation operator. The presence of
a blank between a minus sign and a literal is irrelevant. **—~2A" is the product of A ang -2,
but “A —2" is a subtraction even though there is no space between the minus sign and the 2.

The construct, *A/—2" is illegal. The minus sign is seen as an operator, and HAL/S
never allows two operators in succession. This division could be written as “A/(-2)" or
more sensibly as “-A/2".

2
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To summarize precedence rules,

HAL/S has defined the precedence of each operator to correspond to the usual
mathematical conventions, BUT WHEN IN DOUBT, PARENTHEFSIZE.

Arithmetic expressions may contain a variety of arithmetic types: Integers, scalars,
vectors, and matrices. If one variable of cach type is created as follows:

DECLARE S SCALAR:
DECLARE 1 INTEGER;
DECLARE V VECTOR;
DECLARE M MATRIX:

The following multiplications and assignments are legal:

S=VyV,
V = V*V,
V=VM:
M=VYV,
M=MM:
V=VS:

Theyv are, respectively: the dot (inner) product, the cross product, the vector matrix prod-
uct, the vector outer product, the matrix product, and the scaling of a vector and a matrix.
They produce results of the types indicated vy the targer variable (left hand side) of these
assignments. This is a necessity rather than a coincidence: Every expression has a datatype
and assignments can only be made between like types.

Identical data types are not required. Since integers and scalars may be used inter-
changeably. the following combinations are also legal:

1 =VYV;
V=Vl
M=MI

as are all eight combinations of integers and scalars alone. This, however, exhausts the
combinations that can be written with the four variables declared above. Not all operators
apply to every combination of datatypes. For instance, the addition of a vector to a matrix
is not permitted. In general, operations which are undefined in mathematics are illegal in
HAL/S.

By default, vectors and matrices are of size 3 and 3x3. Section 2.3 explores other pos-
sibilities and defines the operators in more detail. At this point it suffices to say that
wherever a variable of a given type is allowed in an expression, a parenthesized expression of
the same type is also allowed, e g.,

V = V'V SM);
M = MV V);
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221 A Compiled Example

With the names (1. S, M, and V) used 1 the previous section, the type of cach variable is
apparent. Most apphications would require a better notation this s provided by the com-
piler as shown below:

L} DATATYPES:

M | PROZPAM:

M OECLARE 8 SCALAR;
L] DECLARE I INTEGER:
N DECLAPE V VECTCR;
M DECLARE M MATRIX;
£ - -

L $=V . v;

E - - -

4] v=vey;

[ 3 - - 8

M V=VvHN

[ - - -

M H=Vy,

E L] L3R ]

M MMM

£ - -

] V2V Sss

M

CLOSE DATATYPES;

This listing was automatically produced trom the preceding HAL/S statements by a
HAL’S compiler. No changes to the source were made. The asterisk and hyphen overmuarks
appear only in the hsting; they are not coded by the programmer, The compiler indicates
the type of cach vanable in a compilation via the overmarks shown below:

Integer and Scalar none
Vector

Matrix .
Character .

Bit and Boolean

Structure +

Other differences between the source and the hsting are.

1. Tne compiler controls spacing, indenting, and the arrangement of statements on
lines in the hsting. The source format s irrelevant,

[ )

Statements in the listing always appear in multi-line format, with raised exponents
and lowered sub cripts.

The compiler marks cach line of the listing with an E, M, or § to indicate exponent,
main and subscript lines. These characters, as well as “C* for comments, appear outside the
box in the examples. Some blank lines have been removed, and DECLARF statements are
sometimes used in several examples without being repeated. Any HAL/S code which appears
in a box like the one preceding is extracted from an actual listing: It has not been re-typed
and is therefore free of any syntax errors.

T

o ol W



-

2:10 Reading, Writing, and Arithmetic

The standardized listing format produced by HAL/S compilers isolates the reader of
a program from the style of its author. The same listing wili result whether the source was
entered with minimum spacing on as few lines as possible, or was entered one token per line.
As a result, the listing format is a reliable source of information about a program’s structure,
independent of individual programmers. Since the indenting in the listing is re<computed at
cach compilation based at the flow control statements in the source, it is always up to date,
and changes to the source can be made wiitiout undue concern over spacing.

This completes the discussion of HAL/S source and listing formats. More information
about arithmetic data will be needed to proceed with the topic of arithmetic operations.

Exercises

2JA  Write HAL/S expre sions equivalent to the following mathematical expressions.

a) axtbytcz
b) a4 d

¢ e
¢y 21

) x3-3xi+3x-1
¢) (x—l)3
n 100y

g oxy

h) .Y_! V (V. Ware vectors, * - * means dot product)
vV

2.2B  Theleft-hand column contains mathematical expressions that are mcorrectly coded in
HAL/S in the right-hand column. Find the errors and rewrite each expression

correctly.

a) mx+b M*X+B

b) 2(x+1) 2X+1

¢) x~25n X**(-2.5N)
d 3 coe-s

e a AC/BD

r

<

0 "
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2.3 DECLARING DATA

The example below is a declare group which shows the three different torms of DE-
CLARE statements:

OCCLARES:
PROGRAM;
DECLARE COUNTER INTEGER:
DECLARE VECTOR,
POSITION, VELOCITY, TORGUE;
DECLARY NEW_CO_OS0D9 MATRIX,
SPEED SCALAP,
N INTEGER,
WIND_FORCE VECTOR:
CLOSE DEC” RE3:

ITIXIXIXIIIIXX

The first form is the simple DECLARE statement used previously. The next two forms are
for convenience in declaring many variables: the effect is the same as a number of simple
declare statements, The second form is a fectored declare statement. It is distinguished by
the appearance of attributes before the variable names. The attributes apply to all of the
identifiers in the list. This example creates three 3-vectors.

The third form in DECLARE3 is a compound declare statement. This form is used
either to avoid re-typing the word DECLARE, or to show that a group of variables are re-
lated. This grouping capability can aid in the attempt to document a program in the code as
well as in the comments.

Like all HAL/S statements, declarations may be entered in frec format. The example
above shows how the compiler arranges the tokens in th= listing.

The simple declare statement consists of DECLARE, a variable name, and the attributes
of that variable. The factored declare statement consists of DECLARE, a set of attributes, a
comma, and a list of identifiers to which the attributes apply. The compound declare state-
ment consists of DECLARE and a list of identificr-attributes pairs, separated by commas.

The three forms of the DECLARE state:i:ent are for convenience and documentation.
A variable of any type can be created using any form, and the form of declaration used does
not affect the way the data is allocated or referenced.

The attribures of an identifier consist of its data type, precision, dimensionality, initiali-
zation, fock group, and so on. The only attribute that is required in a declare statement is
the duta type. Several other attributes are described in Chaptess three and six. The arithme-
tic data types are described below.

The INTEGER type is used for counters, indexes, status indicators, and other applica-
tions where a variable’s domain is limi.ed to the whole numbers. Integers generally occupy
less storage than scalars and can be operated on more efficiently.

SCALARs correspond to the real numbers. They are generally stored in floating point
format although this is not a language requirement. In any case, they can represent numbers
to “n” digits of precision, where n is constant for a given impiementation. In a floating
point inplementation, scalars may trade-off precisiun for a greater range by representing the
number as 3 fraction (mantissa) and an exponent (characteristic),

o B A M+ WA St LA = et e e = . - - [ -
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The VECTOR type denotes a vector of scalar quantities, such as a position in Cartesian
coordinates. Vectors can be of any length from 2 to an implementation dependent limit.
The VECTOR keyword is followed by a parenthesized number to explicitly specify length;
VECTOR(2), for example, denotes a vector with two components. The VECTOR keyword
alone is an abbreviation of VECTOR(3). No distinction is made between row and column
vectors.

The MATRIX type denotes a matrix of s:alar quantities, such as a linear transformation
on ectors. The row and column lengths of matrices can vary between two and an imple-
mentation defined limit. The MATRIX keyword is followed by two numbers separated
by a comma and enclosed in parentheses to explicitly specify row and column tengths;
MATRIX(4,5). for example, denotes a 4 x S matrix. The MATRIX keyword alone is an
abbreviation of MATRIX(3,3).

A VECTOR(n) quantity can be multiplied by a MATRIX(x,n) quantity yielding a
VECTOR(x) quantity. When x = n = 3, this can serve as a coordinate transformation since
cach component of the resulting vector is equal to the dot product of the onginal vector
and one column of the matrix.

A MATRIX(x.y) quantity can be multiplied by a MATRIX(y,2) quantity vielding a
MATRIX(x,z) quantity. The inne. dimensions must match. The cxponentiation operator
can be used to invert or transpese 2 raatrix or to generate the identity matrix. The cross
product (*) only applies 10 3-vectors. The dot product (.) applies only to vectors of equal
lengths. Addition, subtraction and assignment require identical dimensions.

Real numbers can aiso be expressed by employing the FIXED data type. In this repre-
sentation, only the fractional component of the number is actually stored. The exponent
is specified in the declaration and remains constant for the lifetime of a variable. The
VECTORF and MATRIXF data types correspond to VECTOR and MATRIX, but contain
fixed components instead of scalars. These three data types (FIXED, VECTORF, and
MATRIXF) will be described in more detail in Chapter 14, and will therefore be discussed
in greater depth along with the other four arithmetic data types.

These definitions of the four arithmetic data types are consistent with standard mathe-
matical conventions. Data type is the most important attribute because it determines which
operations may be performed on the variable.

Another important attribute of variables is initialization. The INITIAL attribute speci-
fies the value a variable will have when the program is first loaded into computer memory.
Its form is shown below:

INITIAL_AND_CONSTANT!
PROGRAM;
DECLARE' X SCALAR INITIALION
OECLARE MAX_SPEZED SCALAR INITIALIIA000);
DECLARE FEET_TO_MILES GTALAR CONSTANTLY / $200);
DECLARE SEC_YO_MR CONSYANTIG® (69));
¢ DECLANE MAX_MPH INITIALIJA008 FRET_TO_NILLS / STC_TO_ N )3
LOBE:

ZTIIIIIT3




Deciaring Data -4

The CONSTANT attnbute also causes imtialization When an dentifier has the CON-
STANT attnibute, its salue cannot be changed  Any attempt to assign into it results m an
CITOr MesSage

In other respects, INITIAL and CONSTANT are the same. Both are tollowed by a paren-
thesized value to which the identifier is initially <ct. Varables of any type may be inttiahized
For integers and scalars the value must be a number As the exaraple indicates, thes includes
both anthmetic hterals and expressions which can be evaluated at compile time, Sinee the
value of a CONSTANT cannot be changed, compile ime cxpressions may contain references
to previously declared integers and scalars with the CONSTANT atinbute,

Fhis ¢xample shows two new abbreviated forms SCALAR 18 the default data type It
can be omitted, as in the fourth declaration of the example. Another omission is in the
CLOSIE statement The program nanme s ophional, slthough gooa reasons for kecpimg it will
be seen when nested code blocks are introduced i Chapter Seven.

A vector or matniy s mitighzed in much the dame way as an integer or scalur The
essential difference is that a value tor each of the vector or matny components is specitied
in parentheses following the word INFTIAL or CONSTANT. The values are separated by
commas and are sometimes reterred to as the innal lise

For example, the declaration

DECLARE VECTS VECTOR(S) INITIALI2.8.1.3.3 70,00,
defines a vector with the following initial value
28
1.3
3
0
0

Fach element of the vector s imtualized to the corresponding value in the imtal hist. The
first element receives the first vilue, the second element the second value, et

For a matnx, the elements wie amtiahzed to the values in the mitial hst as tollows the
tirst row s imtwhzed 1o the first values in the hst (umg enough of them to Gill one row),
then the second row s inittahzed, and vo on. The declaration,

DECLARE COORDMAT MATRIX(I.D INITIALL 720 826 111, 8.7 3K06),

defines

b -2 0
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T arrews adicate the order in which the matn» corov o 2 are assigned from the lincar
series oof values in the inisial list,

The imputiant tot to remember 3960t M 50 vl . zation s that the order in which
values are atuigned .» A convand nat by colu, >+ row-by-row order also applies to the
way matrix componcnts are read shd nnnte. o, <Al and WRITE statements, and to
arrays and the MA TRIX shaping tunchion, = wilt be shown later. This coavention is com-
monly called row-major order.

Writing an initia! list as in the above ¢<amples can be cumbersome if the vector or
matrix is kasge. HAL/S offers some sh-rteuts.

I

@

If only one value is specificd in the initialization attribute, all of the components
of the vector or matrix are initialized to that same value. For example:
DECLARE V VECTOR(3) INITIAL(10),

M MATRIX(3.4) INITIAL(O);

10 0o 0o 0 0
10 6 0o 0 O
10 0 0 0 O

I several successive values in the initial list are identical, the programmer can specify
a repetition fuctor and write the common component-values just once. The repeti-
tion factor is 2 number indicating how many times the value is to be repeated, and it
is separated from the value by a # symbol. Using repetition factors, the initialization
attribute,

INITIAL() .5,1.5,1.5.2.7.2.7)

may be written more succinctly as.

INITIAL(3#1.5.282.7)

which is entirely cquivalent to th i:nzer form. The repetition factor may aho
precede 3 parenthesized, comma-separated list of values, in which case the whok
list is repeated. Repetition factors may be nested to form a variety of patterns. For
example, 3 2x3 matrix may be initialized to the identity matrix by the initialization
attribute,

INITIAL(1,2#(340,1))

If only some components arc to be initislized there are two ways to achieve the
desired affect.

2) A repetition factur may be specified without an accompenying value, in which
case the specified number of components are passed over and left uninitislized;
or

b) the last item in the initial lst may be an asterisk, which indicates that the re-
maining components are not to be initialized.

For exampie, the statement,
DECLARE A MATRIX(3.5) INITIAL (1,2.3.44.8,6,38.09,*);
creates the matnix:
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Afl 2 3 x x
x x &8 6 .09
09 09 x x x J

where ¥ indicates an uninitialized comyonent.

The symbols # and * are used in vector and matiix initial lists as well as in other con-
structs. They can also be used in the initial list in the declasation of an array os structure and
in shaping functions, As described later, shaping functions allow the creation of vector and
matrix quantities as in the following statement:

M = MATRIX(1.22(3#20.1)).
Another attribute which is usually omitted. but is sometimes useful is RANGE,

DECLARE I INTEGER RANGE (1 to 100);
DECLARE V VECTOR (100) RANGE ( -.999 10 .999).

If 1 is always used as a subscript for VECTOR V, it only takes on values from | to 100.
In this example. the elements of V only assume values from —.999 to .999 ine” sive. Spec-
ifying RANGE may or may not gencrate run time checks, depending upon the implementa-
tion. Some implementations may also use RANGE to pack variables and save storage within
DENSE structure nodes.

All HAL/S variables must be d~fined before they are referenced. The DECLARE
statement is the most common means of Jdefining an identifier, but other possidilities
such cs use of the TEMPORARY staiement will be introduced in later chapters. While there
are additional Jdata types and attributes, all of the forms of the DECLARE statement have
been presented.

Exercises
2.3A  Write declare statements corresponding to the table below.

IDENTIFIER TYPE INITIAL/CONSTANT
X_DELTA SCALAR INITIALIZED TO |
Y_DELTA SCALAR INITIALIZED TO |
TIME_DELTA CONSTANT VALUE |
DELAY_FACTOR CONSTANT VALUE .8
TEMP SCALAR
TEMP? SCALAR
TEMP3 SCALAR
COUNT INTEGER INITIALIZET: 7O |
POINT _A VECTOR
ORIGIN CONSTANT VALUE (0.0.0)

VECTOR 1 00
TRANSFORM MATRIX INITIALIZEDTO f 0 | O

0 01

L e
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2.4 EXECUTABLE STATEMENTS

This chapter stresses the HALYS source and Isting formats and the anthmetic aperators
and data types Fnough exccutable statements have been infroduced to write simple pro-
grams. The mformation about executable stawements white + will be assumed in later chapters
appears below

The assignmen: statement consists of one or more target vanables, an = sign, and an cx-
pression. To ctore the value of an expression mito several vanables at once the wmdnple uv-
sigriment 1s used, as in.

I.LJLK=0:
A, B, C = (A+B+(/3:

Fuch target variable must be of the same type as the expression un the right. Conversions
between integer and scalar, and single and Jdouble precision are automatically performed,
however.

The operands to the READ statement are o parenthesized channel number and a list of
variables, e g..

READ(5) ALPHA, BETA, GAMMA;

The channel number sclects one of several external devices from which the variables are to
be read. The data must be in a standard character format, so no additional control param-
eters need be given. Chapter eight describes other options in the READ statement,

The WRITE statement also includes an integer channel number. Its remaining operands
may be evpressions of any type. In the statement,

WRITE(O) M, V. M**(- 1), M**(- V.

two matrix and two vector expressions appear. Matrices can be raised to any integral power
1: minus one results in the “inverse™ operation. The outout forinat is described in Chapter
tight along with imore details of the REAL, RFADALL. WRITE and FILE st4tements.

The PROGRAM and CLOSE statements have been described in this chapter,

Most of the remaming HAL/S statements alter the sequential flow of control, These in-
clude statements for conditional execution (Chapter 4), looping (Chapter §), and subrou-
tines (Chapter 7). Error control (Chapter 10) and real-time (Chapters 11 and 12) statements
complete the set.

Chapter three describes additional forms of the arithmetic expression.
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End of Chapter Problems

hl
The following program will compute the roots of the polynomial 3X=+4X 10 and
print them out: '

ROOTS PROGRAM.
DICLARE SCALAR,
ROOTI, ROOT:
ROOTI = ¢ 444**2 4 3 ¢ 10n**0.5)/6:
ROOTY = ( 4 (4**2 4 3 ( 10)**0.5)0,
WRITE(6) ROOTI, ROOT?,
CLOSE ROOTS:

Modify the program to rt;ud in three scalar values A, B, and C from channel §, and
compute the roots of AX=+BX+(.

Note® Assume the input values will vield real roots.

A bali is tossed straight outward from a height of 110 feet with a horizontal velocity
of 4 ft'sec. Fach time it hits the ground, it rebounds to 357 of its previous height.

Write a HAL/S program to compuite the time until the ball hits the ground for the
third time. and how far it has travcled horizontally in that interval.

The applicable cquations of motion are.

I. For an object dropping from height H to the ground or bouncing from the
ground to height H, in time T,

5
H= %gT'
. Y N . . ‘
where g = 32 It,/sec~ is the gravitational acceleration,
2. Honzontal motion ix independent of vertical motion. so if D s horizontal dis-
tance traveled in time T at velocity V.,
D=VT

An artificial satellite moves in a circular orbit of radius 4000 miles. Write a HAL S
program to compute kow long it takes to miake | revolution and write the result on
channel 6.

an- RS
Remember, P = /IMASS OF FARTHI00670x10 8  inCGSunus.

Say the MASS OF EARTH s 5983 x 1037 grams. One mile equals 160934 4 cm.
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2D Letax + by = e,
cx+dy =f,
be a system of 2 equations in 2 anknowns.
Write a HAL/S program to compute the solution of the system.

The inputs a, b, ¢, d. ¢, and { are avallable on channel §, and the solution x, y.
should be written on channel 6.

We are guaranteed that a solution does exist.

Remember, Cramer’s Rule states

ed-bf - af-ec
ad be ad- be
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3.0 MORE BASICS

This chapter describes additional aspects of the arithmetic expression, including sub-
scripting and function invocation. One new non-executable statement is also presented, so
that only new data types, and evecutable statements other than assignment are left to later
chapters.

3.1 BUILT-IN FUNCTIONS

In addition to the arithmetic operators. HAL/S provides a set of built-in functions.
When the name of one of these functions occurs in an expression, code is generated to in-
voke the corresponding library routine. Built-in function names are HAL/S keywords and
the run-time library routines are supplied with the compiler. Examples of several useful
buift4n functions can be given with the aid of a parallelogram:

0

The size and shape of a parallelogram are uniquely determined by the lengths of two ad-
jacent sides and the angle between. These scalar quantities will be called LONG, SHORT and
ALPHA.

Taking the lower left corner as the origin of a coordinate system with an X axis ex-
tending along B, the following program computes the cou rdinates of the corner points:

COANERS:
FROGRAM;
OECLARE SCALAR,
LONG, SHORT, ALPHAS
DECLARE VECTOR(2),
AB, 6C, CO, DA}
READ(S) LONS, SHORT, ALPHA}

AB 2 05
BC = VECTOR (LONG, 0)3
2

DA = VECTOR (SHORYT COSIALPHAL, SHORY SINCALPNAM)G
t

€O = BC ¢+ DA;
WRITEL6) AB, BC. CD, DA;
CLOSE CORNERS:

XXMIMm AXIM GIMIMITIITIIII

Y A § R o R B

-
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The first assignment sets both components of the vector AB to zero. Any arithmetic
variable may be assigned from the litetal zero. Zero is the only such special case: it may be
considered a typeless literal.

The second assignraent illustrates use of the VECTOR shaping function. The expression
VECTORS (1) (LONG.W) represents a 2-vestor ¢ ose components have the values LONG
and zero.

In the third assignment, the arguments to the VECTOR function are arithmetic ex-
pressions. As a result, the first component of DA is set to the product of the lengti; of the
short side and the cosine of the angle ALPHA. The Y™ component of this vector is com-
puted similarly, except that the sine function is used.

The fourth assignment merely illustrates the “paratlelogram rule™ for vector addition.

SIN and COS are algebraic built-in functions. listed in Appendix A. This category in-
cludes SIN, COS, TAN and their inverses (e.g.. ARCSIN) and the hyperbolic forms (e.g..
SINH, ARCCOSH). Also included are LOG, EXP, and SQRT. For argument X, the latter
functions are equivalent to Log, (X), eX, andVX,

Each algebraic function returns a scalar value. The arguments may be any integer or
scaler expression. An algebraic function name with its parenthesized argument is itself a
scalar expression, Thus, function invocatiuns may be nested, as in:

ARCTAN(SIN(X)/SQRT(1 -SIN(X)**1))

A function's arguments are always enclosed in parenthesis: as usual, the evaluation of an
expression always starts at the inner-most parenthesis. In the expression above, 1
SIN(X)**2" 15 evaluated as *'1- ((SIN(X))**2)": The function invocation may be viewed as
of higher precedence than exponentiation. Another interpretation of the same rule is that
the value passed to a function is completely specified within the parenthesis: operators cut-
side the parentheses apply to the value returned.

Before continuing to other classes of built-in functions, consider some general rules:

1. No built-in function modifies any of its arguments.

2. A function name and its argument list together comprise an expression of some data
type.

3. A function argument may be any expression of the specified data type.
All trigonometric functions receive and return angles in radians.

S. Invalid arguments (e.3., SQRT(--1)) are indicate.d via runtime errors, as described in
Chapter Ten.

The parallelogram exan ple also used the VECTOR shaping function. Shaping functions
perform conversions. One function per data type is provided: The arithmetic shaping func-
tions are VECTOR, MATRIX, INTEGER and SCALAR, The VECTOR and MATRIX func-
tions will accept any number of arguments, each of which may be of any arithmetic type.
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The second assignment statement of the example might be entered as.
BC = VECTORS2(LONG.0):

This statement contains the first subscript used so far. Whenever the VECTOR tunction pro-
duces a vector of dimension other than three, the dimensionality of the result must be speci-
fied as a subscript to the function. HAL/S uses the dollar sign (S) and a parenthesized hist of
expressions to indicate 4 subscript: when the subscript is a single token, such as 2 in the ex-
ample, no parentheses are needed.

The MATRIX shaping function may also be subscripted: a 3x2 matrix can be produced
from the numbers 1 -6 by:

MATRIXS (3.2) (1.2.3.4.5,60).
A three-by-three matrix can be produced without a subscript, as in:

MATRIX (1.3#0,1,3#0.1).

The number of values in the argument list of a shaping function must match the sub-
script if one is supplied. Otherwise, the number of values must be three (for a vector) or
nine (for a matrix). If supphed. the subscript must be either a single compile-time expression
indicating the length of a vector or two expressions, indicat: ¢ a pair of matrix dimensions.
The product of these numbers is the number of componerts in the matrix, The dimensions
of any vector or matrix expression must be known at compile-time.

It is the total number of components in a shaping function argument list that must
match the subscript. For instance, given.

DECLARE M MATRIX,
V4 VECTOR (4),
V2 VECTOR (2),
M2l MATRIX (2.2).

All of the following are legal (since each list has 9 components):

M = MATRIX (V4M22.0)
M = MATRIX (V4,0V2,V2):
M = MATRIXS (3.3) (M22.2#V2.0)

Whenever a data aggregate appears in the argument list of a shaping function, it is “‘un-
raveled” in the natural sequence (i.e., the same order as in initial lists, row-major). The
VECTOR and MATRIX functions see their argument lists as a linear stream of scalars. I,
for example, X, Y and Z are three 3-vectors, then MATRIX(X.Y,2) is a 3x3 matrix in
which the first row equals X, the second equals Y and the last contains the values from Z.
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Shaping functions are the only class of built-ins which accept a variable length argument
list. Others have a fixed number of argun.wents, each of a specified lata type. As stated
above, the functions in the “algebraic™ class all take one scalar argument and return a scalar
result, However, one basic rule in HAL/S is that wherever a scalar is expected an integer may
be used. and vice-versa. In the assignment below,

DECLARE 1 INTEGER INITIAL (4):
I = TAN (I

first 1 is converted to a scalar, then the tangent is taken and finally the result is rounded to
the nearest integer betore assignment into 1.

Rounding is defined in the usual way: INTEGER (3.5) = 4, INTEGER (--1.4)y= 1,
and INTEGER (.4999) = 0 As indicated. there are INTEGLR and SCALAR shaping func-
tions analogous to the VECTOR and MATRIX functions. Since integer and scalar literals
are wntten straightforwardly, and integer/scalar conversions are automatically performed,
the INTEGER and SCALAR functions are less often needed than VECTOR and MATRIX.
More applications of these functions will arise after arrays and non-arithmetic data types
have been introduced.

Rounding can also be performed by the ROUND function; this function allows explicit
rounding without using an integer variable, as in:

DECLARE SCALAR. OLD, NFw:
WRITE(6) *CHANGE 15", ROUND(100(NEW - OLD)/OLD),
‘PER CENT".
Character strings are described in chapte -ight; character literals, such as ‘per cent’, are out-
put unchanged by the WRITE stateme OLD=3 and NEW=5, the statement above would
prus vee:

CHANGE 1S 67 PER CENT

The arithmetic functions include ROUND, TRUNCATE, FLOOR, and CEILING. The
distinctions are shown in the following table:

X=3 5 -1.7 -1.3 1.6
ROUND (X) 0 1 -2 -1 2
TRUNCATE (X) 0 0 -1 -1 1
FLOOR (X) 0 o -2 -2 1
CFILING (X) | | -1 -1 2

In words, TRUNCATE ignores the fraction, FLOOR always rounds down, and CEILING
always rounds up. These functions always retumn an integer result.
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The arithmetic class also includes ABS (absolute value) and MOD (modulus). The re-
sult returned by these functions is of the same type as their argument(s). If the two argu-
ments to MOD are of different types, the result is scalar.

The remaining functions in this category, DIV, MIDVAL, ODD, REMAINDER, SIGN
and SIGNUM, are described in Appendix A. It should be noted here that the DIV function
causes an integer division. The remainder is discarded and the quotient is retumned. No
rounding is performed. When integers appear in a quotient written with **/*, they are con-
verted to scalars prior to the division.

The only remaining category of functions to be discussed in this chapter is vector/matrix
built-in functions:

Name Argument Result Comments
ABVAL Vector Scalar Magnitude, length
J TViT
i
UNIT Vector Vector Vector of length | in the
same direction.
V/ABVAL(V)
INVERSE nxn Matrix nxn Matrix Same as M**(--1)
TRANSPOSE nxm Matrix mxn Matrix Same as M**T
DET nxn Matrix Scalar Determinant
TRACE nxn Matrix Scalar Sum of diagonal elements
n
T M

The program below illustrates some of the power and convenience of HAL/S vector/
matrix facilities. 1t first reads in four 3-vectors, X, Y, Z and V, and determines whether X, Y
and Z span 3-space. Then it constructs an orthonormal set from X, Y, and Z yielding vectors
Al, A2 and A3. Finally, these vectors are taken as the axes of a coordinate system, and V
(the fourtu input vector) is expressed in them.

In this program, the determinant is used to find out whether X, Y and Z are linearly
independent. If they are not, the second assignment statement (after Gram-Schmidt) may
result in a runtime error, since unit of the zero vector is undefined. Since the problem is
in 3space, A3 can be computed by a trick: A1*A2 is orthogonal to both Al and A2, and
of the length 1. The transformation of V in the last assignment is conveniently done with a
matrix; if, as in this program, the matrix is not saved, it may be more efficient to use the
equivalent form:

V = VECTOR(V.A1,V.A2 VA3,

A el
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The remaning built-n functions are much the same as those presented heres Each is
an expression of some data type. the arguments to cach are of speaified types. may be any
evpresston, and so forth. They will be discussed after the appropnate concepts and data
ty pes have been defined.

M T COTON0RMAL:

la] FREeITaM

c THIS FI279AM CONSTEUCTS AN CPTHONOPMAL
¢ STY FICY v, ¥ A% T AN TIEN ENTRESGRES
C vV IN 1T

s CECLATE VECTDO,

] Ne Yo Ty V. AL, AZ. AYS
3 - - -

M WEITE(G) DETIMATRININ, ¥, 20,

[ IF FESULT I8 27990, N\, Y AND I DO NOT FORM
c RASIS ... EMFECT EFRCR BELOW.

[3 - .

" Al = TN

t . - - e .

M A 2 UMITOY - (Y . ALY AlY;

£ - - -

M A3 = al e al;

E - - - - -

M V = MATRINtAL, A, A3} Vi

M| croze:

Exercises

3.1A  What are the types and values of the following expressions”

a* ROUND (ABVAL(VECTORSX(SIN(0.5), COS(0.5M)
b) TRANSPOSE (MATRIX(1,3%23.34.5.6))
. ¢) MATRIXS (2.3) (1,0,0,1.1.1) VECTOR(1.2.3)

3B Write a HAL/S program to multiply the 3x3 matrix.

Yy 8 7
6 5 4
3 I 1

by its transpose and wnite the result on channel 6.
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3.1C Translate these mathematical expressions into HAL/S

1+c0s2x
===z

a)

b) tan-} % (trig function is arctangent (inverse tangent);

<) m(ri«-zhsin@ —mrzécoso
(use names hike R_DOT. PHI, PH! _DOT. etc.)

— r—-ma/
d) cos .'."_/._"Ed‘
%
2mE + 220

n-
¢) In(tanX +E))
2 4
(1n = natural logarithm: use P] for #.)

3.2 SUBSCRIPTS

Subscripts are used to operate on components of larger entities. If V is a vector, VSI
refers to the first component.

Any vector or matrix variable or constant may be subscripted. This is done by ap-
pending a dollar sign ($) and a subscript expression. If the subscript expression is a single
token, as in X$3, no parentheses or other punctuation is nceded. Any expression may be
parenthesized: X$ (((3))) is equivalent, Parentheses are required if the subscript involves any
operators; e.g. VS(I+1).

Since matrix subscripts are written with a comma (and thus are not a single token), they
are always parenthesized. as in:

MS$(LJ) = M2S(L1) M3SUJ,1) + M2S(1.)) M3s(J.D) +
M2$(1.3) M35(J.3).

Subscripting may be viewed as of higher precedence than the operators (+,~,%,** etc.).

Thus, V$1**2 is the square of the Ith component. This precedence is natural, since subscript
computations seldom involve exponentiation.

If a subscript expression is of scalar type it is rounded. The result must be in the range |
to N, where N is the declared dimension. Any integer or scalar valued expression may be
used as a subscript.

A single component of a vector or matrix is a scalar, and may be used in any con?:xt
where a scalar variable is allowed.

When an exponent contains a subscript, as in E**(VS$1), the subscripted variable appears
in the single line (source) furmat on the exponent line of the output listing:

gve!

B I

e ews eams aZm-
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In all other cases, a subscript is indicated naturally by its position in the listing rather than a
dollar sign. When a subscript (or exponent) is lowered (or raised) in the listing, the outer
parentheses (if any) are removed. In AS(BSC)**(N-1), all of the parentheses are removed:

N-1
A
B
C

wnzm

A position in 3-space can be represented by a 3-vector in a variety of ways. The program
below uses subscripting to convert Cartesian to polar coordinates. The results consist of
bearing (angle from X axis in horizontal plane), elevation (angle from x axis in vertical
plane), and total distance, Angles are in radians, distance is in the original units.

XYZ_TO_POLAN:
PROGRAM;
DECLARE P VECTOR;
NEADIS) B;

WRITE(G) ARCTANIP / P ), ARCTANIP / ABVAL(P 10 AIVAI.I;)H
H 1 3 2 AT 2

I OXMmMIMIXY

CLOSE XYZ_T0_pOLAR;

This program assumes that the direction of P is in the same hemisphere as the positive x
axis. A more general solution can be written using the ARCTAN2 function.

One new construct appears in the example. P$(2 AT 1) is equal to VECTORS?
(P$1,P$2): A 2-vector, consisting of the X and Y components of P. ABVAL(PS(2 AT 1)) is
the distance from the origin to a point in the horizontal plane directly beneath P,

**2 AT 1" is one type of partition subscript. 1t can be used to specify a slice of a vector
in terms of the partition width and the number of the first included component. The general
form is number AT expression. “Number” is any integer-scalar compile-time expression,
greater than one and less than the corresponding declared dimension. While partition widths
must be known at compile-time, the starting component number may be any integer or
scalar expression.

Any partition of & vector is a vector. A partition of length N can be used in any con-
struct where a declared VECTOR(N) is allowed.

P$(2 AT 1) can also be written as PS(! TO 2). Here, the indices of the first and last
components to be included are given, instead of the width and the fisst component.

The dimension of PS(x TO y) is 1+y—x. Since the dimensionality of every vector-matrix
expression must be pre-determinable, both x and y must be known; neither may be an ex-
pression involving a variable,
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Given V & VECTOR(10.20.30.40,50,60,70),
Vsl = 20,

Vs$(2 TO 4) = (20,30.40),

V$(3 AT 2) ® (20,30.40),

V$(3 AT V$3/10) u (30.40,50),

V34 TO #) = (40.50.60,70), and

VS(2 AT #-1) = (60,70).

The sharp character (#) which appears in the last two partitions means “the last™,
V$(4 TO #) can be read as “the fourth through last components”. 2 AT #-1 is 2 way of
spe=ifying the last two components. For the 7-vector above, any occurence of # can be
replaced by 7.

A subscripted vector is either a scalar or a vector, depending on the type of subscript. A
subscripted matrix may be a scalar, a vector, or a matrix. If both subscripts are simple (1.J)
the result is scalar. If one is simple and the other a pantition (1,1 TO #), the result is a
vector. If both are partitions (2 AT I, 1 TO 2), the result is a matrix. Output listing over-
marks indicate the resultant of type after subscripting.

As usual, a matrix that has been subscripted down to type and dimension “X"’ can be
used in any context where a variable of type and dimension X" is allowed.

The I'P row of a matrix M is MS(J, | TO #). This can also be written as M$(1,*). The
Ith cofumn is MS(*.1). The asterisk means “all of a dimension™. In every case, it is equiva-
lent to **} TO #”,

Using this form of partition subscript, the elenientary row operations used in reducing
matrices can be expressed compactly:

" | RONS:
n | rnosran;
" DECLARE M MATRIX.
] C SCALAN,
] TENe VICTON,
L] 1 INTIGER,
" J INTEGER:
[ MULTIPLY A ROM BY A (NONZERO) CONSTANT!
t - .
] " s CH
H 1.0 1.
¢ ADD A CONSTANT MATIPLE OF BOM J T8 8ON It
3 - - -
] L] s etn
) 1.0 1, F
Continued

FIETE YU SURPRETIP S TSR % |

e
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[ EXCHANSE RCWS 3 AN J:
t - -

n TENP N
s »
t . -

" L] t
$ 1.0 J:®
t . -

" L] LR & H
b ] Je®

n | CLOSE ROUS;

Before leaving the topic of subscripting, one caution is in order. HAL/S stores matrices
in row-major order. This means that a row of matrix is stored in a contiguous block of
memory. The scalars in a column of a matrix do not occupy vonsecutive locations. This may
make operations on matr%colum'\s less efficient than corresponding operations on rows,
A few restrictions on the usc of matrix columns (ASSIGN parameters, the input FILE state-
ment and NAME variables) described later. Matrix columns are acceptable in all con-
structs piesented so far.

This section has desciibesd component subscripting. Most of the material also applies to
array and structure udsrip s, but there are some differences. These topics are discussed in
chapters 6 and 9. Component subscripting applies to vectors, matrices, character strings and
bit strings.

The term subscript expression has been used to streas the {fact that there are forms which
can occur only in subscripts. These are partitions. The forms ATO B, A AT B, *, and #tN
are used only in subscript expressions.

An important point to remember from this section is that the set of vontexts in which
a variable may be used does not depen! on the presence of subscripting, but " the data-
type which results after the subscnpt has been applied.
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Exercises

For the follow g vectors and matrices.,

0 10

1 j 5 S
Vi =l viefs M22-7; M3$=163 0 3 o

" " §2 1 4 7

s 15

a) Give the values of VIS(2), M228(2.1). and M35S(2.3).
b) Give the values o VIS(3 AT 4), M22S(*. D). and M3SS(2TO 3.4 AT D).

¢) Wijte the necessary declarations and imtializations to pioduce Vl' V:. M22 and
M:s.

Write a HAL/S program that will compute the dot products of

]

with each of the columns of

P23
4 5 o
7 8 9

leave the results in a vector, Ke3ULY X, and wnte the results on channel 6.
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3.2C  The diagrams below represent the values of various vectors and matrices.

‘0 7 1 s
Vil = l! V2 = 1|8 vz = | 12 M22 = 3y :’]
2 9 13 -

123
M3 =| -4 -5 -6
78 -9

What values will the following code print:

V41 = VECTORS4(M21):

M22 = MATRIXS(2.2) (M338(2 AT 2. 2 AT 2.
WRITE(6) V4l.

WRITE(6) M22:

M33 = MATRIXS$(3.3%(V31, V32, Vi3)

WRITE(6) M33:

M22 = MATRIXS$(2.2¥V31,V3182),

WRITE(6) M22;

3.3 THE REPLACE STATEMENT

The REPLACE statement provides a capability similar to the macros of other languages.
The REPLACE statement contains an identifier (termed the replace name or macro name)
and a sequence of characters, termed the macro text. The REPLACE statement instructs
the compiler to substitute the macro text for every subsequent accurrence of the macro
name.

The REPLACE statement is not executable; it may only occur in the declare group.
‘The following represents one common use of REPLACE:

REPLACE PRINT BY “WRITE(6)™

REPLACE PUNCH BY “WRITE(T™;
REPLACE CARDS BY “§':
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Any occurrence of PRINT subsequent to these statements will be converted to WRITF(6)
by the compiler The REPLACE statement causes the compiler to substitute the replace fevt
for the replace or macro name wherever it occurs as 2 token i the following source. Using
the replace macros defined above,

READICARDSY X becomes RFAD(S) X

PRINT X, Y, Z: becomes WRITE(O) X, Y, Z:
and

PUNCH X, Y: becomes WRITE(T) X, Y,

The macro is not expanded in the listing. Only the macro name appears. Each reference
to a4 macro is automatically underhined, however: this informs the reader that a replacement
was done i order to avord & possible mis-interpretation.

The replace tent s enclosed in double quotes (**). This ts the only use of the double-
quote character in HAL/S, The replace text may be anv sequence of characters not con-
teung . The replace name or macro name is an idennficr and follows the conventions
deseribed in chapter two. Since REPLACE is a HAL/S statement, it ends with a semi-colen,

The macro name is only recognized when it appears as a token. Given,
RFPLACE A BY "1™
amd
DFCLARF ABLE SCALAR CONSTANT(AX

only one replicement is performed. The other A's are part of keywords and an identifier,
not complete tokens.

Replace macros are commonly used to parameterize 1/0 channels, as indicated above,
and the dimensions of variables, as in:

REPLACF UNKNOWNS BY “o™
DECLARE AUGMENTED MATRIX(UNKNOWNS UNKNOWNS+1);

HAL/S does not allow variables to be used for ecither channel numbers or dimensions.
but since REPLACEments are done at compile-time, macro names may be used where
numbers are required, provided the replace text is an expression computable at compile-
time.

The compiler will process the DFCLARE statement above as if DECLARE AUG-
MENTED MATRIX(0,641); had been coded.
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Replace text is commonly a single number, but may be any string. For example,
REPLACF DUMP BY “WRITF(0) X.Y.Z.GAMMA™,

could be a useftl abbreviation while debugging, The wse of replace macros to abiverviate
HAL.S hevwords s stiongly discouraged. HAL/S was designed to maximaze readability
rather than “writcabihity™, It can be very difficult to decipher a program m which macros
are used inappropriately, The time spent actually typing a program is generally insignifi-
cant compared to the time spent reading it.

The program below lustrates a parameterized replace statement. Here the macro s
used to generate a table (for section 3.4) without writing a loop.

TARLE:
[N
FTPLACE LOGZIND BY “LOGIXI/LOGI2 3
REPLACE ENTRY(HY 8Y “RRITEIC ' Ny Jwe(N-13,N/L0G2L10)";
ENTRYI )
INTRYOLS:
ENTRY (10D
ENTRY(180:
ENTRY(Ju Vi
ENTRYCXN

ENTRY{ 3803
CLOSE TARLES

TIMIMIMICIMIMIMIIIR

In this example, X and N are macro atguments. Wherever N appears in the repiace tent of
the FNTRY macro, the actual parameter (3, 12, ete)) is substituted, Whenever the para-
meter, X, of the Log2 macro occurs in the tent, the value 101s substituted.

The ENTRY macro generates an entire, statement. Note that no final semi<colon was
placed inside the ending quote: This produces o better listing since a semi-colon mist
terminate cach reference to the macro, triggering a new listing line.

The names of previously detined macros may be used 10 the replace text, as in LOG?
above. The compiler will continue to make substitutions until no macro names remain,
before any other processing. An infinite expansion results if a macro’s own name is used
in its replace text, Statements like.

REPLACE X 8Y “X+I'™:

not only cause error messages, but may abort the rest of the compilation,

The above is a briet introduction to the HAL/S macro capubility, Additional features
and more detail can be found in the Language Specitication.
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3.4 THE PRECISION ATTRIBUTES

Most of the matenal so far has been concerned with the arithmetic expression. Rules
for forming expressions from identifiers, operators, hterals, and keywords have been pre-
sented. Every expression has a data type: the type is determined by the types of the identi-
fiers and functions used, the operators which combine them, and the order of evaluation.
Each expression also has a precision.

Arithmetic identifiers and expressions are of either SINGLE or DOUBLE precision.
All previous examples have been single precision. Double precision variables represent
values to more significant digits than single precision vanables.

Any arithmetic operation involving a double precision operand is done in double pre-
cision. The result is also of double precision. Thus, the usual method for specifying that a
computation should be carried out to more digits is by declaring some or all of the vanables
to be double precision.

The computation in the write statement below is performed in double precision.

PARALLAX:
FPCGRAMS

DECLASE EARTH_ORBIT CONSTANT(62.9E61};

GICLAFE VECTOR(Z),

SFRING_READING, FALL_READING;

DECLARE DEVIATION SCALAR COUBLE:

PEAD(S5) SPRING_PEADING, FALL_PEADING;

DEVIATION = ABVAL(SFRING_READING - FALL_READING) / 23

WRITE(64 'DISTANCE=', EARTH_OIBIT / TAM(DEVIATICNY, ‘MILES';
CLOSE PARALLAX;

IXIXIMIMIZITIITIXIX

This program could be used to compute the distance to a star based on its apparent
change of position as the earth moves 180° in its orbit (186 million miles). The input data is
a pair of angles in radians representing the star’s direction ir the Fall, and another set taken
in the Spring. The diagram below illustrates the algorithm in 2-space:




b

.
#

S e 6 TR MHEM L 2 N it ]

S P

316 More Basics

Double precision is used in the example because a very large number is computed from
a very small number using the tangent function near a zero. The double precision tangent
routine is invoked, and the division of 93 million by the result is performed in double pre-
cision. Thus, the expression, “EARTH_ORBIT/TAN(DEVIATION)” is of type double
precision scalar. The WRITE statement outputs aii the digits of its operands.

The arithmetic in the preceding assignment statement is done in single precision.
Whether or not this is adequate depends on the provision of the measurements and the
number of digits in a SCALAR SINGLE. One radian is approximately 2 x 105 arc-seconds.
If the physical measurements are accurate to the nearest half second, then six decimal
digits of precision would be enough.* The value of the expression is converted to double
precision before it is stored into deviation.

The number of digits in the representation of a scalar (of either precision) is imple-
mentation-dependent. These numbers are specified in the User’s Guide. A rule of thumb
for scalars is one decimal digit for every 3 1/3 bits of mantissa.

If the measurements have more significant digits than can be contained in a single pre-
cision scalar, the whole program could be done in double precision:

DECLARE VECTOR(2) DOUBLE,S/F:
READ(S) S,F;
WRITE(6) EARTH_ORBIT/TAN(ABVAL(S-F)/2);

This version is written less mnemonically, and the assignment and write statements are
combined. These simplifications have no effect on precision.

All of the computations in this form are done in double precision. This is triggered
entirely by the DOUBLE keyword in the declaration of S and F. Note that there is only
one name each for the tangent and absolute value functions, whether single or double
precision. The double precision form of a built-in function is automatically invoked when
one or more arguments are of double precision. The value returned by a built-in function
is of the same precision as its argument. Since ABVAL(S-F)/2 is a double precision ex-
pression, the double precision version of TAN is selected.

Double precision expressions are formed under exactly the same rules given for single
precision. No restrictions apply to double precision variables that do not apply to single
precision variables of the same type. Precision is normally specified in declarations rather
than expressions.

*This program aiso assumes that the radius of the earth’s orbit is exactly 92.9E6 miles, and that the read-

ings are made at exactly the same time of day.

i

g g,
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The variables 1, 8. V. and M used 1n previous sections could have been declared as:

DECLARF I INTEGER DOUBLE,
S SCALAR DOUBLE,
V VECTOR DOUBLE,
M MATRIX DOUBLE:

This would not necessitate any changes to the expressions used.

The DOUBLE attribute follows the data type in un attribute list. It may be either
before or after the other minor attributes such as initialization, 1.OCK. and AUTOMATIC;
e.g.

DECLARE COVAR MATRIX(5,5) INITIAL(0) DOUBLE;
DECLARE V VECTOR(5) DOUBLE INITIAL(5#1):

Precision applies to all four arithmetic types. Either SINGLE or DOUBLE may be
specified in the attribute list of any integer, scalar, vector, or matrix. Since single precision
is the default. it need not be specified in declarations.

Double precision vectors and matrices are composed of double precision scalars. All
of the vector-matrix operators and functions have both single and double precision imple-
mentations. As before, double precision routines are selected when either operand is
double, or when anv built-in function argument is double.

Since integers, double integers, single scalars and double scalars may be freely mixed
and substituted for each other, these four combinations typically correspond to different
sets of computer registers or machine instructions. Conversions of integer to scalar and
single to double are made automatically when operand types are incompatible. Since in-
teger and single precision operations are generally more efficient, data is left in the simpler
forms whenever possible.

The type and precision of an expression are determined solely from the expression
itself. Neither attribute depends on the context in which the expression is used. The pre-
cision of the expression in an assignment statement is not determined by the precision
of the target variable on the left hand side. In the following, “10000 N is a single pre-
cision expression, since neither operand of the multiplication is double:

DECLARE D SCALAR DOUBLE;
DECLARE N INTEGER INITIAL(20);
D = 10000 N:

The nght-hand side is of type single precision integer. It will be converted to scalar double
before assignment to D, but the multiplication is done in single integer mode.
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Table ! shows the range of integers with various word sizes. If the code above is ¢x-
ecuted on a computer which represents single integers in 16 bits, the wrong answer will
be produced. The code can be corrected by adding an explicit precision specifier:

D = 10000 NS(«DOUBLE).

The forms "wSINGLE™ and @ DOUBLE’ may be attached as subscripts to any arith-
metic variable. In the example above, “N$(@DOUBLE)” is of type integer double. Thus,
the multiplication is done in double precision and no accuracy is lost.

The precision specifier may also be attached to shaping functions, as in:

DECLARE VECTOR, Vi, V2, V3!
DECLARE M MATRIX DOUBLE:
M = MATRIXS(¢ DOUBLE.3.3XV1.V2,V3).

The precision specifier precedes any subscripts in a shaping function.

Table 1
Range of

# of Bits Integer # of Digits
8 128 2.4082393
12 2048 36123590
6 32768 4.8164796
18 131072 5.4185390
4 8388608 7.2247190
32 214748360 9.6329593

37 3435973800 10.837079

Empirically, double precision algebraic routines give better performance near zeros
and singulanties than their single precision counterparts. These routines are generally
implemented via polynomials, prefaced with code to identify the quadrant or other range
of the argument. The tangent routine, for an argument 0 < X < /2, might use a poly-
nomial of the form

Tan x = A + Bx + CX2 + DX3 + EX4 + FXS

If the value DEVIATION in the parallax example has the value 1E—6 then the tangent
will be:

A + Ba1076 + Cx10-12 + Dx10-18 + Ex10-24 + Fx10-30,

The operation X = X + 10-N X, where n is greater than the number of digits contained in
a scalar, does not change X.

= o B R, ekl
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When two floating point numbers are added, the exponents are first equahzed by
shifting one of the mantissas. 1t is this shifting that causes the loss of sigmficant digits. When
two floating pont numbers are multiplied. no shifting 1s required. The same situation holds
in fixed point, though any shifts required for addition and subtraction must be explicitly
coded.

In the parallax example, double precision allows the addition of more terms ot ihe poly-
nomial used to approximate the tangent function. Double precision generally is needed
when numbers of greatly different magnitudes are added or subtracted, and when a large
nuinber of output digits are needed. The latter case 1s less common., since neither humans
nor digital-analog converters can use more than a few digits directly.

The arithmetic expression is summarized in the next section. All of the statements made
apply equally to single precision, double precision, and mixed. Operations which reference
one or more double precision values are done in doublc precision. More digits are obtained.
at greater expense in memory and execution time. Some implementations have fixed point
scalars: the Language Specification describes the explicit scaling (shifting) operators which
are used in these implementations. More details can be found in the appropriate User's
Manual.

3.5 SUMMARY OF THE ARITHMETIC EXPRESSION
An arithimetic expression has one of the following forms:

b, An ddentifier. This may be an integer, scalar, vector, or matnx variable or constant
of either precision.

to

A literal. No sub-classes of numeric literals are defined.

>

A subscripted identifier. Partition and simple subscripts are allowed, as well as ex-
plicit precision spe.ifiers and scaling operators.

4. A function invocation. Both built-in and user functions may have zero or more
arguments, which are themselves arithmetic expressions. Shaping functions may also
have subscripts.

5. A further expression prefixed by a minus sign. Any arithmetic type may be negated.
An vxpression preceeded by *+" is allowed, but functionless.

6. A further expression in parentheses. The parentheses override precedence rules, and
allow scaling operators and precision specifiers to be attached to exptessions.

7. Two expressions separated by an operator. Only certain combinations of operand
types are allowed for each operator.

The list above is a recursive definition of the syntax of the arithmetic expression.
Expressions may be nested via forms three through seven.

The compiler evaluates an expression outward from the most deeply-nested parentheses.
Within a set of parentheses, the compaler first evaluates any subscripts. Operators are applied
to the components sclected by the subscripting.

—
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The table below shows the arithmetic operators in the order in which they are evaluated
when not overnidden by parentheses:

Operators in Decreasing Precedence

A Exponentiation. Apphes to integers and scalars For matrices.
the exponent must be either an integer or the character T,
Raising a matnx to the “T" power always indicates trans-
position of rows and columns. Integer powers apply only to
square matrices. If 1is negative. M**(]) is equal to INVERSE
(M)**(-D.

multiplication Indicated by a blank. Multiplication is allowed between any
two types, provided the “inner dimensions’™ match, Resulting
type given by outer dimensions.

Cross product. Applies only to 3-vectors. The result 1s a
3-vector, given by:

Result = Veclofl.\':\']~ X3Y2X3Y, X|Y3.X|Y3 X:Yp.
The resulting vector 1s orthogonal to X and Y, and ot magni-

tude (ABVAL(X)ABVAL(Y)SIN(OD, where 8 = the angle
between Xand Y.

Dot, scalar, or inner product. Applies to vectors of equal
dimension. The result s a scalar equal to the sum of the
products of corresponding components. It also equals the
product of the magnitudes of the vectors and cosine of the
angle between.

/ Division. The left operand may be integer, scalar, vector, or
matrix. The right must be integer or scalar. The result has the
’ same dimension as the left operand. but is never integer.

+, - Addition and Subtraction. If one operand is scalar, the
other may be cither integer or scalar. Otherwise, the two
operands must be of the same type and dimension.

Negation. Applies to any data type. The result is of the same
type

Operators of equal precedence are evaluated left to right, except for exponentiation and
division which are evaluated right to left.

Before non-arithmetic expressions are introduced. a number of statements which alter
the sequential flow of control will be presented in chapters four and five.



3B

Summary of the Arithmetic Expression  3-21

Exercises
HAL/S has seven infix operators:
o, KDL e

Which infix operators are legal for the following pairs of data types? The characters
<> represent a blank, meaning multiplication.

Of what datatype is the result for each legal operation?

i) SCALAR SCALAR
1) SCALAR INTECER
ili) INTEGER SCALAR
iv) INTEGER INTEGER
v) VECTOR VECTOR
vi) VECTOR MATRIX
vii) VECTOR INTEGER/SCALAR
viii) INTEGER/SCALAR VECTOR
ix) MATRIX MATRIX
x) MATRIX INTEGER/SCALAR
End Of Chapter Problems

Write a HAL/S program ti.ut will read 2 vectors from channel $ and write the angle
between them on ch.:net 6.

Remember, V| .V, = I Vi " V:I cos 8

where 0 is angle between V| and V.

There are occasions when it is necessary or advantageous to shift one’s frame of ref-
erence. These occasions call for a translation ard/or rotation of the coordinate sys-

tem. Ssy the old axis (x, y) is shifted to the new axis (x’, y*) in the following
manner; the x, y origin is shifted to (x,, y,,) and rotated by a degrees as shown:
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The resulting translation equations are-

X' = (X Xp) cosa + ly - y,) sina

y = —-(x - Xg) sina + y - yo) cosa

Write a HAL/S program that will translate 2 coordinates in the x, y systemn to new
coordinates n X', y* where x, = 54000, y, = 11800C @ = 17°. The two coordinates
are available on channei § and shouk’ be written on channel 6.

Remember that HAL/S trigonoinetric built-ins require angles in radians.

Write the nght hall of the following 4 assignments tor the partitions in matrix M
below

a) V4 = where v is a4 vector

b) M2 = M22isa 2x2 matrix
¢) M4 = M34 is a 3Ix4 matrix
d) V10 = V10is a 10 vector

123 45 6 7 8 9 10

1 b
2 a X X
3 X X
4 4
5 X XXX
6 X X X X
7 X X X X
8 d

Q9

X X X X XXX X X X

)

[ PN

JEEwen
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4.0 CONDITIONAL EXECUTION

The statements in 2 program are executed sequentially, except when a flow control
statement is executed. The flow control statements can be loosely categorized by their use
for decisions, loops, and subroutines. These groups are described in chapters four, five, and
seven.

Although the HAL/S assignment statement is quite flexible. only a limited set of pro-
grams can be written without flow control statements. The ability of digital computers to
evaluate conditions and select alternatives is the essence of their power.

4.1 IF. . THEN. . ELSE

A choice between two aiternatives can be written with the HAL/S IF statement:

IF A = 0 THEN WRITE(6) ‘ZERO": o
ELSE WRITE(6) A

In this instance. the two aliernatives are executable statements and the test is a comparison.

The first alternative is called the then clause, the second the else clause

IF is a compound statement; ve. it is composed of further statements. The concept of
a statement containing “sub-stalements’” is common in HAL/S: It will be useful to define
the entire sequence, “IF comparison THEN statement ELSE starement™ as a single state-
ment, thereby:

Unless the then or else clauses contain further flow control statements®. control passes
to the next sequential statement after an IF stutement,

There are two equivalent graphical representations of the IF statement

Standar.  w Structured Flow

TRUE FALSE THEN
‘ CONDITION CLAUSE
1 ELSE
CLAUSE
TAEN FLSE
CLAUSE CLAUSE

'

*And oaly from the set EXIT, REPEAT, RETURN and GO TO.

ROWPREYS- =1

EX
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Fhe torm on the left iflustrates the rule above by the explicit joining of two arrows ot
the bottom. The system illustrated on the nght is appropniate to structured programming
languages in which complex decisions are represented through nesting of compound state-
ments, all of which have one path in and one path out All of the HAL'S flow control
statements (except GO TO) can be represented tn structured flowcharts.

The directions of the lines in a structured fiowchart are imphed Vertical ines are always
traversed top to bottom. Honzontsl lines are aiways followed left to night and back. Lines
may intersect only at the points of IF and DO CASE statements. There is no provision for
overriding the natural direction.

fhe above rules obviously limit the class of programs that can be represented. However,
the forms that have been ruled cut have been shown to be symptomatic of programs that
are difficult to read and mamntan. Any algonthm which can be expressed by a standard
flowchart (where equare boxes contain HAL/S assignments) 1s equivalent to some HAL/S
program, without GO TO statements, which can be represented by a structured flowchart.

T'he IF statement can select an alternative based on the results Hf a boolean combination
of several compansons. A companson consists of two expressions separsted by a relatong,
operator, as in.

IF A = 0 THEN
IF N> 12 [HEN . .
IF B**2 <4 A C THEN . . .

The complete list of relational operators is.

= evaet squality

= not exactly equal

NOT =

> greater than

> = greater than or equal

< 1ess than

< = less than or equal

a> not greater than (same as <=)
NOT 2>

a< not less than (same as >=)
NOT <

Since the character 7 does not have a standard graphic across all systems, the keyword
“NOT" may be freely substituted for it

All of the operators above may be used between any cumbination of integer or scalar
single or double expressions. When necessary, integrrs are automatically converteu to
scalars, and single precision is raised 1o double before the comy arison.

-
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However., only the first two relational operators (= and 7= ran e used between veciors,
and matrices. Two vectors or matrices inay be compared for equali'y or inequality if they
have the same dimension. They are equal if each pair of compn. “ts is exactly equal, and

1equal otierwise.

It is not generally useful to compare scaats, vew . or n.airices for equality. In the
statement,

IF A = B THEN WRITE(6) 'PURE COINCIDENCE,

where A and B are scalars, the WRITE statement is executed only if every digit in A is the
same a3 1n B. Due to the finite precision of scalars and roundoff problems, if B had becn set

by

B= A3
B=B+2A3 /*1/3 A + 2/3 A%/

B would probably not be equal to A. Scalars can be tested for approximate equality as in:
IF ABS(A-B) < EPSILON THEN . . .
where EPSILON is “sufficiently small”, e.g..

DECLARE EPSILON CINSTANT(.00000});

EPSILON = (A+B)/16**(.2S MANTISSA _LENGTH).

etc

The keywords AND, OR, and NOT (or their equivalents, &, |, and ")) may be used to
combine several comparisons in one IF statement. Parentheses are generally required around
each simple comparison. For example,

iF (A>0) AND (A<100) THEN . . .
IF NOT((A<=0) OR (A>=100)} THEN . . .

Both of these forms will result in \he execution of the then clause if (and only i)
0 < A < 100. The first test checks whether A is in the gven range. The “..ond test is
equivalent since it checks whether A is not outside the range. The semie of «ny comparison
or combination thereof can be reversed viing the NOT keyword 25 shown in the second
test. This use of NOT requires 3 parenthesized argument.

Fs o : =
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Suppose a number 1s divided tito one of three ranges, as shown:

IF N <10 THEN R = 1:
EISE IF N < 20 THEN R = I
ELSE R = 3.

Here, the else clause of an IF statement is an entire IF.  .THEN. . .ELSE group. It may
be diagrammed as follo vs

THEN
IF N<10 >‘

Re1
ELSBIF Ne20 g a2

ELSE

R=3

The THFN clause of an IF.. THEN. .ELSE group may nor be an IF statement.*
A four way branch can be written wath a LC. . .END group. as described in the next sec-
tion. There are no restrictions to the THEN clause of an JF statement if no ELSE clause
is present.

The IF statement allows the selection of one or two alternitives based on the evaluation
of a comparison. When no action is required unless the test succeeds, the else clause may be
omitted entireiy:

IF A > 0 THEN B = SQRT(A);
This statement is functionally equivalent to:

IF A NOT > 0 THEN;
ELSE B = SQRT(A):

Here the then clause is just a semicolon, which is the HAL/S equivalent of a no-op or null
stitement.

IF. . .THEN.  .ELSE may be viewed as a single statement. The then and else clauses
each contain a further single statement. Any executable statement is allowed in the else
clause; the then clause may contain any executable statement except a further IF. . .THEN
. . .ELSE. The else clause may also be omitted entirely.

* fhis rule avoids the “dangling else” problem common to ALGOL-like lunguages.
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Exercises

4.1A  What 1» wrong with the following HAL/S conditional statements (in which all van-

4.1B

ables are of SCALAR typel:

a) IF A < B < ¢ I'HEN MIDDLE = B!
b II' B < C THEN
IFC<DTHEN B = D.
ELSF B = .
ELSE C = B,
¢y IF RADIUS > 0 & NOT RADIUS > | THEN
WRITE(6) PI RADIUS**2,

Where possible, convert these standard flowcharts to structured flowcharts, without
duplicating or chinunating boxes. Indicate why the others cannot be converted.

a4)

TRUE CAl FALSE

N

TRUE FALSE

L | La | [2 ]

TRUE \c)>wu.sn L

A4 AS

da
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d)

Ez‘r__]

Tell whether the following conditions are satistied. not satistied. or itlegal. Assume
that:

. B. C. D are scalars
. S are 3-vectors

< =P <P

[}

s

<

<

¢ U
@i, —

ts

240

2) A<B

b) € > (NOT b)

D AT=B&IC>=D
HES1=VIORBTI>0
& VLS

N (V.V < O) & (NOT(V.S < C)
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4.1D  Write the following descriptions in relational expressions:

g) A is greater than B but less than C.

h) The vector V is not equal to the vectos S and C not less than D unless D is
equal to 4,

4.1E  Write HAL/S code implementing this flowchart:

N\ _JHEN | oo L

IFr
w<L/

ELSE IF \ THEN -
W>1 P an sQ 0
ELSE sq = 1
AREA = WL
IF \ THEN WRITE (6)
sQ =0 'NO SQUARE'
ELSE IF \ THB{ WRITE(6)
AREA < 4 l* SMALL SQUARE'

ELS WRITE(6)
'LARGE SQUARE'
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4.2 THE DO. . [END GROUP

A series of eaecutable statements may be combined into a do group. which may then

be used anywhere a stngle statementas required . e g, in the then clause.
This allows, tor example, the followtng coding of a tour way decision.

"X <0 THEN M = 0.,
ELSt DO.
IF X < 100 THEN DO.
IF X > 10 THEN M = 2,

FLSE M = 1.
END.
FLSE M = 3,

END.

This example. which sets M to the order of magnitude of X, can be diagrammed-

M=0

THEN \ THEN
IF X<100 IF X>10

M=2

L/

ELSE LS

M=3

M=]

Since 1t is only one statement, the entire sequence above could be further nested i 1F or

other compound statements.

A do group consists of a DO statement. any number of exccutable statements* and an

FND statement: e.g.

uo:l L ———[

) =
END: =1

[ P

*QOr TEMPORARY statements.
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The example below computes PI by an inefticient but illustrative aleonithm,

FOR 1= g

1 to 1000 x
X

, X=RANDOM HITRISS = HIT

3 l "..” L——-———-j

Y =RANDOM o

1 .

IF xeezeyee2 Yoo THEN] (oo iing

<=}

ELSEI 1SS MIss+1

HRITE(G)!JHIT/(N_XTM!SS

2 ’ ¢
.’
Here 1t can be seen that loops are shown with the same shaped symbol as IF statements.
HAL S has several types of loops, all of which use the DO and END keywords. The simplest
type is shown above, and in the following compiled listing
b
-
v
\ f"
e
v
B
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DAPTBOARD_APPROXIMATION:
FROGMG
CICLASE SCALzR,
X Y3
DICLARE INTECER,
I, HIV, MISS:
PO FCR I =1 TJ 1009:
X = PaNaOM;
Y = RANDOMG
N <
IF X + Y <=1 THEN
HIT = HIT ¢ 13
ELSS
MISS = MISS ¢ 1
{4 H
RIITELE) & NIT /7 1000:
CLOSE DARTBOARD_AFPROXIMATION:

TZXATXTIIMIIXIIIALITXX

Since the compiler used in prepanng listings for this manual automatically indents pro-
grams to correspond to a structured flow, diagrams will not be provided for subsequent
examples. The same mformation is contained i the indenting as in the flow.

The simple do group (without ateration) as classified as an evecurable statement. No
additional machine code 1s generated however. An extra do group. like an extra set of paren-
theses, is sometimes used for clanty. In the order of magnitude example, the else clause of
the outer IF statement 1s bracketed by an unnecessary DO. . FND pair It 1s common
pracece to use a do group as a then or else clause even when it s not requared by the syntax.
This allows for the possitality of later insertions.

There is no way to branch into any part of a compound statement from outside the
statement, HAL/S has a GO TO statement, and any executable statement may be labelled,
but restrictions are imposed A label inside a do group, in a then clause or an else clause, can
only be used in GO TO statements which are themselves in the same croup or clause.

The do group has two uses, primanly, it allows the nesting of statemenis in tests and
toops. The secondary purpose is to define the scope of temporary data.

The TEMPORARY statement 1s similar to the DECLARE statement. It allows a tem-
porary variable of any type to be created, as shown on the following page
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Ho| ExamrPiE_2:
# | PROGUAM;

L} DECLARE VEL VECTOR,

] MY_FRAME MATRIX:

" DECLARE VECTO?,

M RESULTZ, RESULTZ, E:
c

L} 0o}

H TEMPCRARY V_FRIME VECTOR:
E - - -

M V_PRIME = MY_FRAME VEL;

3 - -

H RESULTY = UNIT(V_PRIML);
1 - - -

L] RESULY2 = V_FRIMNE @ E;

o] END;

M | CLOSE EXAMPLE_2;

The vector, V_PRIME, exists only for the duration of the do group. If the next do
group vontained:

TEMPORARY § SCALAR;

S would probably occupy one of the storuge locations that had just been vsed for
V_PRIME.

Temporary variables may be of any type and precision. They may not, however, be
initialized or given other minor attributes. TEMPORARY statements can only be used
within do groups. Storage is allocated to temporary variables for the duration of the
execution of the immediately enclosing do group. The TEMPORARY statement informs the
compiler of the range over which a variable will be needed; the actual allocation and freeing
of storage is done in an implementation-dependent manner.

Very few restrictions are made on the use of temporary variables. They may not be ref-
ferenced at all from outside of the containing do group: otherwise, they are usable in all of
the constructs introduced so far. Proper use of the TEMPORARY statement can reduce
a program’s size without substantially increasing its execution time.
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Exercises

4.2A  Q A standard means of flowcharting 1s to use a system where.
THEN ELSE
r—@—-’ means a conditional execution along one of
the paths (but not both!) depending on the
condition represented by ‘CX".
represents 4 DO. . .END group without

any conditional branches in the group.

Consider the following flowhcart:

E] & represent DO. . .[END

groups ¢ach 5§ state-
ments long.

represents a DO. . .[END

group 150 statements long.

Rewrite this flowchart in a way to represent a shorter program.

Can this change be made in a valid HAL/S program?

4.2B  Write a HAL/S program that will solve a system of 2 equations in 2 unknowns
as in problem 2D.

However, do not assume a solution exists, incorporate a test to insure that the
denominator is not zero.

4.2C Implemeat the following structured flowchart segment in HAL/S, using as few
DO. . .END groups as possible.
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IF IF \
Y <X THENY<X-1 THEN Y=Y+l
ELSE Y=y -1
ELSE IF \ THEN X=X =1
Y>X+1 )
ELSE X=X +1
4.2D Consider the following Powchart on the next page:
@ means a conditional execution on CX.
E means a single statement represented by M.

a) There is a construct in the flowchart that is not legal in HAL/S. What is it?

b) Rewrite the flowchart to eliminate the illegal construct, and write a code frag-
ment corresponding to this structure. Do not introduce or eliminate any
conditions.

¢) How would & structured flowchart have made this mistake more easily
avoidable?
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ELSE TH

(4]
-
—

(<]
L

In problem 4.2D, we have seen that if the branches are 1o be preserved as shown,
the code corresponding to

had to be repeated.

Lets say that:

is 250 statements long, whereas all the other
3 -

are still a single statement. Rewrite the flowchart and the code to allow the code for

10 appear only once.
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4.3 BOOLEANS

The tust between IF and THEN in the IF statement is cisher a comipanson or a hoolean
ovprenston. A boolean expression is a boolean vanable or 4 combination thereof. Both ty pes
ot tests can be compounded using ANII, OR, and NOT. but they cannot be mixed in one IF
statement A boolean expression alway s can be converted to s companson as in

ol oEearLe_y:

M| FACsm

M DECLAPE 01 #COLEAN;
3 .

] IF Q1 = TRUE THEIN
" 00;

4

¢

c

ad o0n:

M| CLOSE Dham Y

The IF statement can alvo be wntten IF Q1 THEN

TRUFE s 4 boolean hteral. It s equivatent to BIN'D or ON Booleans can take on one
of only two posenle values the other s wrtten FALSE, BIN'O” or OFF. The three dirter-
ent representations for each value allow mnemonic compansons and assignments asin’

DECLARE BOOLEAN INITIALIOFF),
POWER, RFADY,
IF READY = FALSE THEN POWFR = OFF,

As the example shows, the form of the declare and assignment statements s the same for

booleans ds for other Jata types. Booleans are annotated by the compiler with a . on the
I hine.

Booleans are used tor flags, signal states and to optime:ze complex compansons. The
keyword BOOLEAN s interchangeable with BIT¢l). Bit strings of length greater than one
are discusaed tn Chapter 13, Since the concept of a “tlag” v s0 common, the BOOLL AN

keyword & included in the language and the apphcable subset of BIT operations ts rre-
sented here,

The preceding IF statement would normally be wnitten

IF NOT RFADY THEN POWLR = OFF,

[P
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NOT READY s a boolean expression, which can also be wntten 1 READY. Boolean ex-
pressions are composed of boolean vanables. the operators AND. OR. and NOT, and
boolean functions. The operators are defined 11 their truth tables below

A AND B A OR B NOT A
B B A
JTRUE FALSE | TRUE FALSE |TRUE  FALSE
TRUE |TRUE FALSE TRUE |TRUE TRUE  [FALSE  TRUE
AA
FALSE|FALSE  FALSE  FALSF | TRUE FALSE

OR 1s the inclusive or operator. Exclusive or is provided as a built-in function.

IF XOR(A.B) THEN. . .
but the eyuivalent statement,

IF A 1= B THEN. . .
is preferred.

There are sixteen possible distinct binary operators on booleans. These include AND,
OR, and NOT as well as exclusive or, the bi-conditional, etc. Any of them can be expressed
by 4 combination of AND, OR ard NOT. An) bool:an expression can be converted to an

equivalent boolean express.n using only NOT and one of the other two. One such trans-
formation is expressed by DeMorgan’s rules:

A AND B = NOT(NOT A UR NOT B)
and
A OR B = NOT(NOT A AND NOT B)

For ancther example, XOR(A.B) could also be written "'A AND(NOT B) OR (NOT A) AND
B

The expression A&k(TIB) | (TAMKB is the same as “A exclusive-or B'" or A is not equal
to B”. Scecause AND has higher precedence than OR, the expression is interpreted as'

(Ak(T1B)) OR ((T1AXB)

The bootean operators, AND, OR, and NOT, have considesable similarities to the arith-
metic operators, multiplication, addition and negation, respectively. This results in the con-
vention that A&B | C&D s interpreted as the OR (logical sum) of two ANDs (logical pro
ducts).
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Consider the follnwing exanmiple of the translation from an Fnglish statement of a con-
dition to a boolean expression.

English If the power is on and cither it 1s not overheated or the overnide 1s set, and

esther switch 6 15 on or it is off and switch 7 1s set.

HAL'S Power & (not overheated or override) & (switch 6 or (n.ot switch 6 and switch
.

Careful study of the kngh b form may fail to reveal how the precedence 1s communicated,
but most readers will see the correspondence between the two forms. Symbolic logic shows

that while there are 4 number of relable rules for translatton, much rests on the reader’s
understanding of the situation to which an assertion applies.

The boolean expression above ts wntten with the minimum number of parentheses,

taking advantage of the precedence of NOT over OR and AND. The expression, (NOT
SWITCH6 AND SWITCH7), has the truth table-

SWITCH6
~ ON___ OFF
SWITCH7 ON I FALSE TRUE

OFF | FALSE FALSE

and 1s equivalent to:

(UNOT SWITCH6) ANL. SWITCHD).

In summary,

Preceacnce of hoolear operators®

Fust  NOT
AND
Last OR

In addition to the test in an IF statement, boolean expressions may be used in assign-
ment statements {the left hand side must also be boolean), in comparisons with other
boolean expressions, and in WHILE and UNTIL loops (as described in the next chapter).
Boolean expressions may appear in WRITE statements; boolean variables may be read.

No other data type is automatically converted to booicc 1. and boolean is not auto-
maticall: converted to any other type. Booleans cannot be used in arithmetic expressions,
and anthmetic variables cannot be used in boolean expressivis. The concept of precision

does not apply to booleans, but bir strings may be viewed as sets of booleans un which
operations can be performed in parallel.
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Both types of test in the IF siatement can be written using the AND, OR, andé NOT
operators. These operators combine either comparisons or booleuns via precedence rules
like those of arithmetic. Parentheses can be used to override the normal precedence. When
comparisons are combined. 1t is good practice to parenthesize

IFd < 0) OR (1 > 9) THEN. . .

In bool:an eapressions. the precedence rules make most parentheses unnecessary: an ex-
ception is as in.

IF A OR (NOT B) THEN. . .

It is not possible to combine comparisons and booleans in a single expression. If a statement
(or group) s to be executed based on both a boolean and a comparison. the test should be
written:

IF (CHECKING = TRUE) AND (I < 0) THEN I = -k
or as.

IF CHECKING THEN IF 1 <O THEN | = - I,

Exercises

4.3A For each ol the following, tell whether it is a boolean expression, a relational ex-
pression. or illegal. For the boolean expressions, tell whether the value is TRUE
or FALSE: for the relational expression, tell whether or not the condition is satis-
fied. Assume that:

A, B are INTEGER
V. S are J-vectors
UPFLG. TRFLG are booieans

A=12 B=6
V=(2406) S=347
UPFLG = TRUE TRFLG = FALSE

a} UPFLG = TRFLG

b) NOT UPFLG

¢} NOT(V = §)

d) NOT TRFLG OR A > B
¢) (A < B) = TRUE

) UPFLG = TRUE

@) TRFLG & (TUPFLG)
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44 DOCASE AND GO TO

The most basic flow control constructs are loops, the IF statement, and the DO group.
These may be combined and compounded to implement complex structures of decisions.
The rematning flow control statements fill in a few gaps. They are not as heavily used as
the various forms of IF and DO

The IF statement allows a two-way decision based on a comparison or boolean. An
n-way brancn based on an integer can be written with the DO CASE statement, for

cxample.

EXAMPLE 4:
PRCGOAN;
DECLARE SCALAR,
A, By C, O;
DECLARE NUM_GCOD INTEGER:
DECLATE SCALAR,
VALUE, OLD_VALUE;

XXX

(2]

00 CASE NuM_GOOD;
ELSE
00:
VALUE = OLD_VALUE;
RETUPNS
ENDS
VALUS = A3
VALUE = (A + B) /7 2%
VALUE z MIDVALLA, 8, C);
00}

END;
END;
OLD_VALUE 2 VALUE;
CLOSE EXAMPLE &3

Z2X2XX O XITXIIITXIIIXIIXX

This code seis VALUE to some combination of the variables A, B, and C. It could
ne part of an algorithm for combining redundant values from a set of sensors. The code is

diagrammed:

N i . A i s

Chama
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DO CASF and GO TO 421

CASE ELSE
NUM_GO0D )= VMUE*%EHE
RETURN
OLD VALUE =
VALDE 1
VALUE=A
2 lvaiues
(A+B)/2
3| vaLue-
M1DVAL(A.B,C)
4

—]

Any integer or scalar expression may appear after the word CASE. The expression 1s eval-
uated and rounded to the nearest integer if necessary. In this example, if the expression,
NUM GOOD, is less than one or greater than four, the else clause is executed, Otherwise,

one of the four statements between the end of the else clause and the end « DO CASE
statement is executed. The fourth statement (fourth case) is a DO group » another
instance of the use of DO. . [END to combine several statements where one . ured.

Only one of the cases is executed. After the selected case is done, control passes to the
statement after the END statement which matches DO CASE (in this example, to the assign-
ment of OLDD VALUE).

Each case may be any executable statement. This includes assignment, 1IF. . . THEN

VLSE, 1/0, a DO group, a loop, or a further DO CASE statement. The only way to pass

control to one of these nested statements is by executing the DO CASE header with an
appropriate value of the expression.
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The compiler counts the cases and prints a case number to the extreme night of each
in the listing. If an elsc clause is supplied, code is generated to compare the value of the
case expression against the bounds, and the number of cases. Jf the expression is out of
range, the ¢lse clause executes and conirol then continues after the END of the DO CASE.
The else clause may be omitted entirely. in which case no checking s performed. Omission
of the else clause may be risky. as under some circumstances, control can be passed com-
pletely out of the HAL/S program if the expression selects a missing case and no else clause
1s supplied.

In the example above, a RETURN stateme:t appears in the else clause, When RETURN
is used n a program, it 1s equivalent to transf: rring control to the close statement. it exits
the program.

In chapter five, the EXIT and REPEAT statements are described. They are drawn in the
same way:

RETURN ( EXIT ) REPEAT

Each is an unconditional transfer of contro! to a point detined by the structure of the pro-
gram rather than to a user label. This completes the set of symbols used in a structured flow
diagram.

The flow control statements include those described in this chapter, loops. and (in a
sense) the statements for defining and invoking procedures and functions. Some of the
real-time statements of Chapter 12 may be thought of as transferring control. though there
are conceptual differences.

The only other flow control statement in HAL/S 15 GO TO. The experience of a number
of large HAL/S programming projects has shown that the GO TO statement is not neces-
sary. It is provided chiefly for mechanical translations from other languages.

Once a degree of familiarity with the use of compound statements for flow control is
achieved, it can be seen that the concept of a “‘conditional transfer’” or branch instruction
is merely a free form notation for flow diagrams: a line with an arrowhead. The restrictions
on the use of GOTO correspond to the rules for a structured flow diagram presented in
Section 9.1. GOTO’s are not allowed at all in a proper structured flow, but HAL/S permits
some exceptions:

1) between unnested statements in the same program or other block.
2) between statements nested at the same level in the same compou-.. statement,

3) to a less deeply nested statement in the same block, provided that ('i¢ target state-
ment is not contained in any compound statement which does not a'sc contain the
GO TO statement.
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Exercises
4.4A Rewrite the following code segment using the DO CASE statement:

IF 1 = 0 THEN SCRAMBLE = 4;
ELSE IF | = | THEN SCRAMBLE = O:
ELSE IF 1 = 2 THEN SCRAMBLE = §:
ELSE IF 1 = 4 THEN SCRAMBLE = 1.
ELSE IF | = § THEN SCRAMBLE = _:
ELSE SCRAMBLE = 3:

i B

. M
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The Iterative DO FOR Statement 5-1

5.0 LOOPS

A loop is a constra:t which causes a set of statements to be executed repetitively. In
HAL/S, a loop is a compound statement: The statements to be iterated are nested within
the loop. Four types of loop are provided, so that the need for explicit backward branches
(GO TO’s) is virtually eliminated.

A loop is created in HAL/S by attaching one or more iteration control phrases to the
simple DO. . .END construct which was described in the previous chapter. These iteration
control phrases govern the number of times the loop is exccuted and may provide a counter
or “loop control variable” which can be referenced from within the loop.

The example below uses the most common type of loop, the iterative DO FOR, to
compute the factorial of a number. The number, N_MAX, is read from channel 5 and
(N_MAX)! is written to channel six.

FACTCRIAL:
PROGPAM;
DECLAPE INTEGER,
RESULY, N_tAX, I}
READIS) N_MAX;
RESULT - 1;
DO FOR I = 2 TO N_MAY BY 1;
RESULT = I RESULT;
END;
WRITE(6) RESULT:
CLOSE FACTORIAL;

TITTXIXIIXIXIXIX

Note that the body of the loop is executed repetitively until the control variable excezds the
final value specified after the keyword “TO”. The example shown computes factorial
(N_MAX) by doing N_MAX-1 multiplies by the control variable, which takes on the
values 2, 3,4, ..., N_MAX on successive iterations.

In addition to the iterative DO FOR, other forms of iteration control are: The discrete
DO FOR, the WHILE phrase and the UNTIL phrase.

These constructs probably are familiar to the reader who has used other algebraic pro-
gramming languages, therefore, the remainder of the discussion in this chapter is primarily
concerned with the limitations and restrictions of HAL/S loops, and the ways in which
these constructs may be combined with each other and with other features of the language.

§.1 THE ITERATIVE DO FOR STATEMENT
In the preceding example, the loop body is a single statement:
RESULT = 1 RESULT;
In general, the loop body may contain any nuiaber of executable statements. Since the loop

is constructed from a simple dc group, the TEMPORARY statement may also occur in
the loop body.

el ata ST e
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In the phrase,
FOR | = 2 TO N_MAX BY I:

I is termed the loop control variable, 2 is the mtial value, N MAX s the final value, and |
s the mcremenr,

HAL/S places very few restrictions on these four parameten. In particular, the loop
control vanable may be any sinple or double precision integer or scalar vanable.* For
example. given the declaration”

DECLARE A INTEGFR,
B INTEGER DOUBLE,
C SCALAR.
D SCALAR DOUBLE:

all four of the following combinations are permissible.

DO FOR A = B TO C BY D;
DO FOR B = T BY 1.
PO FOR C :
DO FOR D = A-B TO A+B BY D.

" ]
jo e}
_
(oY o]
Fﬁ
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The initial and final values and the increment used in an iterative DO FOR loop may be
any arithmetic expression. That is, each may be any expression which evaluates to a positive
or negative, single or double precision, integer or scalar value. Each expression is evaluated
only once, at entry to the loop. This, if variables used in the expressions are modified
within the loop, the iteration parameters of the loop are not affected.

DO FOR TEMPORARY 1 = 2 TO N MAX BY 1.

A TEMPORARY loop control vanable created n this way may be used within the body of
the loop in any way thrt a declared variable could be used, but outside of the loop the TEM-
PORARY variable does not exist. Since the TEMPORARY control variabie 1s effectively
unDECLARED at the end of the loop, the memory locations occupied by the vartable mav
be re-used, thus reducing the storage requirement of the program containing the DO FOk
TEMPORARY. Under some versions of the compiler a speed advantage may also result.
TEMPORARY vcontrol vanables created in a loop are always single precision integers; their
names must not duplicate declaied data or other TEMPORARY vanables in the same loop.

The initial and final values and the inctement used in an iterative DO FOR loop may be
any arithmetic expression. That is, cach may be any expression which evaluates to a positive
or negative, single or double precision, integer or scalar value. Each expression 1s evaluated
only once, at entry to the loop. Thus, if vanables used in the expressions are modified
within the loop, the iteration parameters of the loop are not attected.

*Single precision integers are generally the most efficient.
p e
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Note that in HAL/S the loop control variable may be a scalar; e.g.:

DECLARE SCALAR, X, PI CONSTANT (3.14159).
DO FOR X = —PI TO PI BY .001:

WRITE(6) X, SIN(X), COS(X), TAN(X),;
END:

This code will produce a set of trigonometric tables. giving sine. cosine, and tangent
values for 2000 = different angles.

The operation of the loop is the same as for integers: On each iteration, &+~ increment is
added to the loop control variable, and if the final value is not exceeded, the loop body is
executed. The values taken on by X are: —w, —%+.001, —7+.002, . . ., etc. The last value
will not exactly equal =, because it is generated by a sequence of additions of .001.

In the event that the result produced by adding the increment to the current value of the
loop variable is not of the same type or precision as the loop variable, the usual rules for
mixed mode assignment statements govern the conversion. For instance, if the loop variable
is an integer and the increment is less than one, rounding will occur on each pass through
the loop. In this case, if the increment is positive but less than .5, the value of the loop con-
trol variable would never be changed and the loop would never terminate,

As previously stated, any or all of initial value, final value, and increment may be nega-
tive. For instance, the loop below is functionally equivalent to the one i.: the original form
of FACTORIAL:

DO FOR I = N_MAX TO 2 BY -1;
RESULT = | RESULT;
END;

When a negative increment is specified, the termination condition becomes “is the loop
variable algebraically less than the final value?”

The only way that the body of a HAL/S loop may be entered is by execution of the DO
statement which heads the loop; however, control may leave the foop by a variety of means
other than the control variable exceeding the final value (e.g., RETURN, EXIT, and GO TO
statements, error conditions, etc.). Since the increment has been added to the loop variable
before the test against the final value is made, at normal exit from an lterative DO FOR
loop the loop variable will be greater than the specified final value (if the increment js posi-
tive) or less than the final value (if the increment is negative). This fact may be used to
determine whether or not the loop was exited prematurely. Use of this feature is illustrated
in the sample below. which sets the variable NEG_PART to the number of the first negative
component in a vector, or to zero if there is no ncgative component:

DECLARE V VECTOR(S);
DECLARE NEG_PART INTEGER;
DO FOR NEG_PART = | TO §;
IF VSNEG_PART < 0 THEN EXIT;
END;
IF NEG_PART > § THEN NEG_PART = 0;

wt,x -
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The FXIT statement s not tully described until later in this chapter, but in this case the
meaming 1s mttne I component number NEG PART of Vs less than zero, control exits
from the loop (1o the second {F test) Thus, NEG_ PART will be greater than the S if only
i the entire vector was examined without finding a negative value,

Sinee 1t s necessary to test NEG PART outside of the 1-on, g temporary loop control
varable would not be appropriate in this example.

To find the second negatine component m a vector, the following loop could be added
atter the one above

DO FOR NEG PART = NEG PART TO S,
IF VSNFG PART < 0 THEN EXIT,
END.

Since the mital and final values and the .nerement specified in an erative DO FOR
loop are evaluated only once tpriom to the first iteration), there is no conflict in using
NEG PART both as a loop control value and as the imtial value. This new loop will con-
tinue where the fint stopped.

The “BY 1 clause has been omutted above. since 1 is th- most commonly used incre-
ment, it is the defaul® and need not be specified.

In summuary, the teratine DO FOR takes four parameters, the first, the control van-
able, may be any previously declared anthmetic wentifier or may be 4 TEMPORARY
mteger created within the DO FOR statement. The mmitial value, final value and ircre-
ment may be any anthmetic expression, the imcrement may be allowed to default to one
by omitting the BY clause These expressions are evaluated pnor to the first pass through
the loop. and the results detennine whether the loop is executed once, many times or not
at all. The loop terminates when the value of the control variable passes the final valve
spectfied in the TO clause. Later in this chapter, we will see how the addition of a WHILE
or UNTIL clause can modity the execution of a loop, but finst we wall examine another
form of the DO FOR construct.

Exercises

S.IA Consider the following code fragment where

1 & N are integers,
S s scalar

N=10;

S$=.1,

DOFORI=1 TO2BYS;
N=N+1,

END,

What 1s the value of N on exit trom the loop?

$.18  Consider the example where NEG PART was set to tne number of the first com-
ponent of a vector less than zero, or zeroaf no element. were negative.
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Change the code given in the example tr leave the number of the last negative com-

ponent instead of the first.

Consider the following vode fragment where.

N & [ are integers.

N=9;

DOFOR1=1TONBY 2,
N=N+1,

END:

What is the value of N on exit from the loop?

Consider the following code fragment where:

A is a §x5 matnx,
X an1Y are integers.

X=1;

ROWS: Y=1,

LOOP: AS (X,Y)=.2;
IF Y = § THEN GOTO OUT.
Y=Y+1;
GOTO LOOP;

OUT: IF X =5 THEN GOTO DONE:
X=X+1;
GOTO ROWS;

DONE: .

a) What does this do?

b) Rewrite this using HAL/S iterative do for loops.

The Discrere DO FOR Statement $-8
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5.2 THE DISCRETE DO FOR STATEMENT

In order to understand the utihty of another type of DO FOR statement, consider the
problem of recognizing prime numbers. The code below sets a boolean variable, PRIME. to
TRUE if NUM s pnime and to FALSE otherwise (for simplicity. NUM 1s assumed to lie
between one and one-hundred).

DECLARE PRIME BOOLEAN INITIAL(ON).
DECLARE INTEGER. NUM. L
READ(5) NUM,
DO FOR 1 =2 3 5 7.
IF REMAINDER(NUM,1) = 0 THEN PRIME = FALSE:
END:

This code produces the correct answer over the range 10 to 100, but s inefficient. A
better algonthm is to test the divisibility of NUM only by numbers which ire themselves
prime. This can be conveniently expressed using the discrete DO FOR.

DO FOR 1 =2 3. 5. 7;
IF REMAINDER(NUM,l) = 0 THEN PRIME = FALSE,
END:

In this case, the loop is executed only four times, with the loop control variable, 1, equal
to two on the first pass. three on the second, five on the third and seven on the final itera-
tion. The reader may note that both programs contain a logical error in that the wrong
result is obtained when NUM is equal to 2, 3, 5, or 7: this error will be fixed when the
WHILE phrase is introduced in the next section of this chapter.

The form of the discrete DO FOR 15 similar to the iterative version: the discrete form
spucifies a list of values (expressions) to be assigned to the loop control variable rather than
an algorithm (initial value, final value, and increment) for computing successive values.

On each pass through the loop, the control variable is set to the value of one of the
expressions to the night of the equal sign. The expressions are used from left to right on
successive iterations of the loop. each one must evaluate 10 an integer or scalar value. If
the type or precision of any expression is different from that of the control variable. the
usual rules for mixed mode assignments are applied.

Unlike the expressions in the iterative DO FOR, the expressions in the discrete DO
FOR are not evaluated until the iteration of the loop on which they are to be assigned into
the control variable. This means that the value of the control variable on future passes
through the loop can be changed by storing into variables refercnced in the expressions from
the body of the loop; e.g.:

DOFOR 1= 1,1 2L 3L ...

At exit from a discrete DO FOR loop, the contsol variable retains the value of the last
expression, unless the variable was TEMPORARY, in wh '\ case it is undefined.
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The WHILE Clouse 8-

The remaiming iteration control phrases, WHILE and UNTIL, provide for looping with-
out the use of a control variable. The next two sections of this chapter descnbe how to
create a loop with these phrases. and show how they may be used to modify the effect of a
DO FOR.

$.3 THE WHILE CLAUSE

The WHILE clause may b* appended to a sumple DO . .. END group to create a4 loop, or
1t may be appended to ether “>rm of the DO FOR 1o introduce an additional condition for
comtinuation of 4 loop. The general form of the WHILF clause i«

WHILF boolean expression
or

WHILE relational expression.

The boolean or relutional expression represents a condition for continuation of the loop, as
tong Js it evaluates to the TRUF state, the loop continues. For example

DO WHILF TRUE,
END,

18 an infinate loop, whereas:

DO WHILE X < 2
END;

continues until X2

The expression in the WHILE clause is evaluated pnicr to wach execution of the first
statemuent of tie loop body. It on any pass the expression evaluates to FALSE, the loop
body is skupped and ¢execution continues at the statement after the END of the DO WHILF
or DO FOR .. WHILE loop. The DO WHILE loop is particularly useful when the number
of wterations that should be made through a loop is not known in advance. Consider, for
example, Newton's method for computing the square root of 4 number, X. The method
generates closer and closer approximations until the current approximation is “good
enotigh”. "Good enough™ 1 defined as the point where the gamn in accuracy from the lass
iteration was negligible (less than FPSILON) The example below illustrates the point.

NIWTON_SOR ( :

PROGRANG
DECLARE X SCALAR:
DULCARE EPIILON CONSTANT(.001);
DECLARY SCALAR, OLD_APPROX, NFN_APPROXI
NLAOIS) X3
NEM_APPROX 3 X / 23
OLD_APIRUX = 0}
00 LNILE ABSINIM_APPROX - OLD_APPROX) > UPSILON;
OL® APPROX 2 REN_APPROX)
NRN_APPROR ¥ ‘OL0_APPROX ¢ X / OLO_APPROX) / 2}
o
VEITEIG) "SART OF *, X, ° 13 ¢, NEW_APPROX)
CLOSE NENTON_SORT:

ITXTIZIIIIITIIIIX
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Note that this progrem can be made to produce more accurate results (at the expense of
greater execution time) merely by decreasing the constant EPSILON. Note also that if
X 1s equal to zero. the WH'LE test will fail on the first evaluation and the correct answe’
#iil be produced but no division by zero wili occur.

When the WHILE clause is adde. to a DO FOR, a new loop is not created, but an
additional condition for continuation »f the existing loop is imposed. This combination
can be used to correct the deficiency in the PRIME program of Section 5.2 s shown
below:

DECLARE PRIME BOOLEAN IN(TIAL (TXUF), 1 INTEGER, NUM INTEGER:
READ(S) NUM;
DO FOR | = 2, 3, 5 7 WHILE | < 2 SQRT (NUM);
IF REMAINDER (NUM,I) = 0 THEN PRIME = FALSF,
END;

To sece how the WHILE clause corrects the bug in the old version suppose NUM equals
3. Under the old version, REMAINDER (3.3) would t. computed on the second pass
through the loop, *’.e result would be zero, and PRIME would be set to FALSE. Now, how-
ever, prior (0 each execution of the loop body, the test “is | <= SQRT (NUM)?" is made.
On the first execution of the DO FOR statement, | is set to 'wo, Then | is compared with
SQRT (NUM), wkich here is SQRT <3)or 1.732. Since it is no? the case that 2 <= 1.732, the
loop body is not executed and PRIME remains TRUE. Adding the 'WHILE clause in this
example also has the effect of determining the primeness of most numbers in fewer itera-
tions. For example, when X = 17 the locp is iterated only twice since 2 is less than or equal
to SQRT (17) and 3 is less than or equal to SQRT (17), but \ne next number in the DO
FOR, §, is greater than SQRT (17).

EXERCISES

$3A Chey ie “mdein the last example in Section $.1 that finds the number of the first
cnr oo ) :liminating the need for the line:

#OouIV L _PWRT < 0 THEN EXIT
by using a WHILE clause.

$.4 THE UNTIL CLAUSF
The general form of the UNTIL clause is.
UNTIL boolean expressin

or
UNTIL resstionad expre<sion.
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{t may be used in the same contexts as the WHILE clause: with the simple DO . .. END
group or with either forn of the DO FOR statement. Unlike the WHILE clause. however,

the UNTIL clause specifies a condition under which iteration of the loop is to terminate.
When it evalutes to TRUE, the loop terminates. For example,

DO UNTIL 3 = 4;
END;

1s an infinite loop, whereas

DO WHILE 3 - 4.
END;

is effectively a NO-OP (never executes). UNTIL is not, however, simply an inverse of
WHILE for the ;ollowing reason: An UNTIL clause never terminates a loop before the first
pass through the loop body This property of the U'NTIL clause may be used to avoid the
need to wnitialize variables used in the termination ondition of a loop. Suppose, for instance,
that 4 “rogram is to rcad vectors from channel 5. When a zero vector is read, the sum of the
previous vectors is printed and another s~t is read. The program is to run indefinitely.

This could be express.d via two WHILE loops:

DECLARE VECTOR, TOTAL, V:
DO WHILE TRUE,
TOTAL = 0;
V = VECTCR (1, 1, I}
DO WHILE V 71 = VECTOR (0, 0, O):
READ(S) Vv,
"OTAL = TOTAL + V;
E 0
WRITE(6) TOTAL;
END;

In this ~xample, the assignment:

V = VECTOR (1, 1, 1);

is used to force V to be non-zero before the inner loup executes. If this statement were not
provided, the inner loop would not execute after the first iteration of the outer.

The essential difficulty is that the inner loop written with WHILE will test the value of
V before it has been read.

B R R
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I the UNTIL domn s used for the ineer loog, the smittiahization of Vs not needed
DO WHILE TRUL.
TOoIAt = 0.
DO UNTIL V = VECTOR (0. 0. O,
READSY V,

TOTAL = TOTAL + V|
IND,

WRITH() TOTAL:
i ND.

Since the UNTIL clause cannot termunate the foop betore the firt iteration, the initial
value of Vs unmportant

When, as in this case, the UNTIL clause is used with a simple DO .. FND group, it is

usefitl to concenve of the terrunation test as being done at the end of the loop (atter the last
statement of the loop body ).

Uik the WHILE clause, UNTHL may also be used ay an sdditional condition on either
ty pe of DO FOR statement, as i
DO FOR | = |

1O 10 UNTIL ASE = 0,
END.

Tlhis example 18 a loop (with no loop body) which sets 1 to the mdey of the fist zero

component m avector, A However, stnee the UNTH cannoet termimate the foop on its tind
ieration, af AST=0, the toop will centinue 1o look for an additional zero.

When used wath a DO FOR statement, the UNTH clause causes a test tor termination
on the secomd amd all subsequent sterations of the Joop, o the second through tast steratyon,

the test is pettormed afrer the (DO FORY loop contro! variable has been updated, out
brrore the fisst statement of the Toop body is executed,

Fuervises

S4A  Constder the problem of exercise 3.3A. A proposed solution is shown betow.,
DIECLARF V VECTOR(S)Y,
DEFCLARE NEG PART INTEGER:

DO FOR NEG PART = | TO S UNTIL VSNFG PART < O:
END,

I NFG PART > § THEN NLG PART = O:

Why is this not an acceptable solution?

ORI
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5.5 EXIT AND RFPEA

The constructs already introduced i this chapter provide for the repeated execution of
a loop body. and for a condition to be specitied under which control is to exit from a loop
These language features, howevet. only govem the execution of an cnnire loop body., tihe
statentents to be introduced i this section allow a porrion of a loop to be repeated and tor
a4 termunation test to be made at uny point i the loop body rather than only at the begn-
mng or end. To see how these statements, FAIT and REPEAT, augment the other loop
control statements, consider the following program,

/* THIS PROGRAM RFADS A SERIYS OF ANGLFS FXPRESSED IN DFGREES.
CONVERTS THEM TO RADIANS, AND KFFPS A RUNNING TOTAL. ON +ACH CYCLE
IT PRINTS THt CURRFNT TOTAL (IN RADIANS) AND THE TANGENT OF THE
TOTAL ANGLE PRODUCED. IT AUTOMATICALLY STOPS WHEN THE RUNNING
TOTAL EXCFEDS § 7, OR I} THE COMPUTATION OF THE TANGENT COMES TOO
CLOSF TO A SINGULARITY */

SUMS:
qamM;
REFLACE CARDS BY 5" /*CARD READER IS DEVICE Se/
FEPLACE LIST BY "6 /wPRINTER 1S DEVICE e/
CECLARE SCALLR,

\

TAN_
FRCT

TOTAL INITIALIO),
PI CONSTANT(3.14159281,
FAD_PER_DEGREE CCNSTANT(PI / 180),
SHIFT CCNSTANT(FI 7 20
DO UNTIL TOTAL > § FI;
READICATDS X
TOTAL = TOTAL # X RAD_PER_DEGREE;
IF NID(TOTAL - SHIFT, PI) < .00 THEN
£XIT;
KRITECLIST) TOTAL, TAN(TOTAL);
£ND

CLOSE TAN_SUMS;

TIITZTXI22IXIXXT T2

In this example, the statement:
“IF MOD(TOTAL SHIFT.PD < 001 THFN EXIT"
causes the loop to termnate 1if TOTAL gets within 001 of #/2, 3n/2, ot¢. It the FXIT

statement 1s executed, control passes to the statement after the FND of the loop (te. to
the CLOSF statement).

T'he program might be more useful, however, if instead of temunating at a singularity,
it allowed the user to enter another value and continued. Thus can be accomplished by

changing the FXIT statement to REPUVAT as foliows.

IF MOD(TOTAL SHIFT.PD < .001 THEN RFPEAT,
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if the REPEAT statement 1s executed control will retum to the top of the loop. where
TOTAL wif be compared with § PL If this test fals (TOTAL is not greater than 5 Ph. the
foop body will be re<evecuted.

This example shows how EXIT may be used to insert a completion test at any point in
the loop body, and how REPEAT may be used to cause iteration of a portion of the loop
body.

The general form of the EXIT statement is:

EXIT:
or
EXIT label:

When used without a fabel. FXIT causes an unconditional transfer of control out ot the
nearest enclosing DO . . . FND group (1.e. to the statement following the END of the inme-
drately enclosing loop or stmple DO . . . END group). If a label 1 supplied. it must n:stch
tae label on some DO . . FND group in which the EXIT statement is nested: this torm
causes transfer of control out of the corresponding loop or simple DO . . . END gioup.
Similarly. the general form of the REPEAT statement is:

REPFAT,
or
REPFAT lubel,

Unlike the EXIT statement. however. REPEFAT applies only to loops When used without a
label it causes repetition of the nearest enclosing DO WHILE, DO UNTIL . or DO FOR toop.
Repetition, in this sense, means that the loop control variable (if any) s updated. the ter
mination condition (if any ) 1s re-evaluated. and 1f the conditions for termination are not met
then control is passed to the first statement of the loop bady. Taus. the presence of a
RFPEAT statement in a loop does not change the number of iteratinas of the loop, but
does determine which portion of the loop body ts executed on cach tteration.

EXIT and REPEAT are controlled forms of GO TO. The location to which control is
transferred 1s defined by the structure of the program. Thus, whenever these «tatements are
used. thewr funenrons are what thetr names imply. FXIT always “gets out o™ a compound
statement. REPEAT always repeats a loop. GO TQ. on the otier hand, has o variety of
functional uses. When GO TO is used, the reader must fiad the corresponding ksbel to gain
any idea of the eftect of the GO TO.

The following cade fragment uses arrows to llustrate the transter of control caused by
EXIT and REPEAT,

A s
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SAMPLE_FLON:
FRe2ag
DICLACE INTEGER,
I. Js Ko Lo M5
DO UMTIL FALSE:
IF 1 = 0 TiEN
co:
4 =03
REFEAT;

£

It 0O FCO K = 1 TO 1C:
LOOP3. LI FOR L = M. M M o N
IF J = 0 THIN
REFLAT LOCROS

[' TS EXITS
EMD:
(4310
[
CLOSE SA“PLE_FLOW;

XX ITLITXILITITITTITITIIZIXIXIITX

Since REPEAT apphes only to loops. its effect 1s not changed by placing 1t in a simple
DO .. END group. This fact can be used to make the TAN SUM program more mforma-
tive as shown below:

IF MOIXTOTAL SHIFT.PDH < .001 THEN DO.

WRITEF(LIST) "TANGFNT UNDFFINFD":
REPEAT, /* READ ANOTHER ANGLE */

FND,

Exercises

§.5A Given

a) DO FOR X =1 10 100,

EXIT:

END.

A
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5A

5B

and.

b) DO FOR X = 1 TO 100:
REPEAT.

END.
Assume that the EXIT and REPEAT are executed in some conditional branch s.ume-

ttime during the execution of the loop. These are the only EXIT’s and REPEAT's in
the loops and there are no branches out ot the loops.

What can be said about the value of the control variable ‘X’ in a) and t) above when
the first statement after the END is executed?

End Of Chapter Problems

Write 4 HAL/S program to use Simpson’s rule to approximate the area under the
curve y =4/X using smaller and smaller segments, delta. The process continues until

the area resulting from (delta/2) size segments differs from the result obtained using
delta by less than EPSILON.

Read the limits of mtegration from channel § in scalar form, and write the resulting
area out on channel 6.

Remember, Simpson’s Rule is:

FINAL deita
f f(x)dx=———[f(initial+ 2 INITIAL+DELTA)+ . . .
INITIAL ‘ +20(H INAL-DELTA)+f(FINAL))

Include any assumptions you make.

Consider the following code:

PROBLEM _PROG: PROGRAM;
DECLARE INTEGER,
NUMBER INITIAL(3),
DIVIDER:
TEST _INIT: DIVIDER = 2
TEST: IF MOD (NUMBER, DIVIDER) = 0 THEN GO TO LOSE;
DIVIDER = DIVIDER + 1:
IF DIVIDER = NUMBER THEN GO TO WIN;
GO TO TEST;
LOSE: NUMBER = NUMBER + 1;
IF NUMBER = 500 THEN GO TO DONE:
GO TO TEST_INIT;

‘a
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WIN: WRITE(6) NUMBER.

NUMBtR = NUMBER + 1:

IF NUMBER < 500 THEN GO TO TEST _INIT:
DONE:CLOSE PROBLEM PROG.

MOD(a.b) yields a(mod by, the remainder when the greatest integral multiple of b
less than a 1s subtracted from a.

a) What does this program do”
b) Rewrite it using do for . . . end loops so that the program 1s easter to read.
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6.0 ARRAYS

An ARRAY is an ordered set of variables of identical type which are accessed by a single

name. Arrays are completely distinct from vectors and matrices. The primary uses of
ARRAY= in HAL/S are:

1) For periorming identical operations on similar data as in:
DECLARE IMU_ STATUS ARRAY(4) INTEGER;
DO FOR 1 =1 TO 4;
IF IMU_STATUS$! NOT = 0 THEN CALL RING_BELLS;
END:
) For maintaining a history of previous data values as in:
DECLARE ALT HISTORY ARRAY(100) SCALAR DOUBLE;

CYCLE = CYCLE+];
ALT_HISTORYSCYCLE = NEW ALTITUDE;
and

3) For maintaining tables of all sorts, as in:

DECLARE DAYS_PER_MONTH ARRAY(12)
INTEGER INITIAL(31,28,31,30,31,30,31,31,30,31,30,31):

HAL/S allows arrays of any data type; however, the most frequently used are single
dimensioned arrays of INTEGERs and SCALARs like those in the examples above. There-
fore, the basic concepts of declaring and subscripting arrays will be thoroughly examined

in this context before arrays of other data types and more advanced array operations are
discussed.

6.1 ARRAYS OF INTEGERS AND SCALARS

Arrays are created using the ARRAY keyword in the DECLARE statement; a parenthe-
sized compile-time expression or list of expressions must follow the ARRAY keyword to
denote the size of the array. Arrayness is an attribute of a vatiable of some data type rather
than a new type. Hence, given the statements:

DECLARE A ARRAY(3) SCALAR;
DECLARE V VECTNR(3);

the data type of A is SCALAR and the type of V is VECTOR even though both consist of
three single precision SCALAR elements.

Following the word ARRAY is a parenthesized list of dimensiors. Each dimension is
described by a compile-time expression, which is the size of the dimension and the index
of the last element. X, Y, and Z in the next figure could be REPLACEd with any integral
value up to an implementation-dependent limit:

s ol ot Bk Al - A
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ARRAY (X} ARRAY (Y,X)
} X

(T TT=TTT] 1

ARRAY (Z,Y,X)

iy

]—X

Atrays are intialized in the same manner as VFCTORs and MATRIXs: a list of values s
provided i parenthests tollowing the heyword INITIAL or CONSTANT, The special charae-
ters * and # may be used tor partial imtishzation and repetition as before, Thus,

DECLAREF A ARRAY(S) INTFGER INITIAL 3514200,
creates

A= QA0
and,

DECLARF 8 ARRAY(12) SCALAR INHIALOS, 1 SQRT(D,
SART( . 482",

creates

B = (0.1 1y/3 22222000



.

Arrays of Integers and Scalars 6-3

Since it is often desirable to initialize an entire array to the same value, HAL/S also allows an
initial (or constant) list to consist of only one value;in this case every element of the array
is set to the value provided. Thus the forms

DECLARE X ARRAY(5) INTEGER INITIAL(5#0).
and-
DECLARE X ARRAY(S5) INTEGER INITIAL(0):

are equivalent, Finally, the Al.. .Y attribute may also be *“‘factored’” or specified only
once in @ DECLARE statement which creates raultiple arrays as shown below

DFCLARE ARRAY(3),
GYRO INPUT INTEGER,
ATT _RATE SCALAR DOUBLE,
SCALE CONSTANT(.013,.026..013).

The arrays declared above might serve as the tnputs and outputs of a simple program
which dcas linear scaling of data read from an acceleroraeter assembly. Assume that
GYRO _INPUT contains three values which represent the rates cf vehicle rotation along the

pitch, roll, and yaw axes. A simple routine to convert the data to more convenient units and
data representation might be:

DECLARE N INTEGER;
DECLARE BIAS SCALAR INITIAL(57.296);
DO FOR N = | TO 3;
ATT_RATESN = SCALESN GYRO_INPUTSN + BIAS;
END;

In tiiis example, the various arrays are subscripted irt the same fashion as VECTORs, and,
in general, the same rules apply: The subscript of a one-dimensional array may be any
arithmetic expression which evaluates to a number between one and the size of the array.
If the expression does not produce an integral result, it is rounded to the nearest integer.
An array element, such as ATT_RATES1* or SCALES(N+2), may be used in any context
in which a simplc vanable of the same data type can be used. For instance, given two
SCALAR ARRAY(10)’s, A and B, the following statements are ali legal:

AS1,AS2 = SIN(AS3):
AS(B$(AS3)) = 19,

DO UNTIL AS] = AS2;

IF ASN < AS(N+1) THEN . ..

*Some readers may wish to review the discussion of single and multiline fortnats tn Chapter 2.

SRR
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Another example of the use of arrays appears in 2xamp 1. This program determines
the minimum, maximum. and average time required to inv. ( a 5x5 MATRIX containing
random data:

pree—

EXAMPLE 1
FRAOGRAH;
CECLAPE M MATRIX(S, $);
CECLAFE N MATRIXIS, $);
OECLAPE TIME ARRAY(130) SCALAR INITIAL(O);
DECLAPE SCALAR,
THIN, TMAX, TMEAN;
DECLARE INTEGER.
I, J» K
00 FOR I 2 1 TO 100;
DO FCR J 21 70 S
0O FOR K = 1 70 3;
N ¥ RANDOM;
44K

N0

END;

1€ = RUNTINE:
1

. we}

N3 H 3

TIMNE 3 SUNTIME - TINE ;
b4 1

WIEI™M BIXIX GIITIXIIITXITIXX

END
NOM FROCESS THI HUNORED-SAMPLES IN YHE ARWAY [TINE)
THAX, TMEAN, THMIN = YIME ;
1
QO FOR X = 2 YO 100;
TMHEAN 2 YTMEAN ¢ TINE ;
1
IF TINE > THAX THEN
1

THAX 3 TIME
H
IF TIME < THIN THEN
1
THIN = TIME
t

(11
THEAN & THEAN / 100:
CLOSE EXAMPLE i:

XIT VI UWIET WX VI LI B N X

In this example, two previously undefined functions, RANDOM and RUNTIME are invoked:
RANDOM is used to set the matrix to a set of pseudo-randoin numbers, and RUNTIME
returns the valu, «  the system’s real time clock.
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It may be noted that the min. max, and mear. could have been computed within the
main loop without saving all of the values in an array. Saving the data allows additional
statistics, such as the median to be computed (see exercises). This method of obeaining
timing data may be tnaccurate if the time required to read the clock is significant.

HAL/S provides for multi-dimensional arrays: These are typically used for easc of
subscripting and to contribute to the readability of a prcgram by logical grouping of data.
For example, suppose that instead of onc accelerometer assembly as described earlier,
there were four of them, for reasons of fault-tolerance. Then, we might declare the input
data as a two-dimensional array.

DECLARE GYRO_INPUT ARRAY(4.3) INTEGER;

Now, GYRO_INPUTS?3,2) is the second measurement from the third unit,
GYRO_INPUTS$(1,1) isth= first measureinent from the first unit, and GYRO_INPUTS(1,*)
is all the data from unit one, i.c. the same three measurements we had before. The use of
an asterisk to indicate *all of a particular dimension” s the same as in VECTOR/MATRIX
subscripting, the #, TO, and AT forms alsc apply. Thus, GYRO_INPUTS$(*,1) is an array
containing the first measurement from e¢ach of the four accelerometer units, and
GYRO _INPUTS(2 AT # -1,*) is a 2x2 array contuining three measurements from each of
the last two units, In the next sectior, we will sz¢ how these complex subscripts are used,
but first we shall examine the general form of multi-dimensional arrays (and finish process-
ing the redundant accelerometer data along the way ).

The maximum number of dimensions in an array depends on the particular HAL/S
compiler in ase. All present HAL/S compilers allow from one to three dimensions. In
declaring an array, the number of dimensions is denoted by the number of expressions
in parenthesis following the keyword ARRAY. Thus,

DECLARE A ARRAY(5,9,4) SCALAR,
B ARRAY(180) SCALAR;

creates two arrays of 180 scalars, but A is 3-uimensional while B is linear. The first element
of B is BS], whereas the first element of A is AS(1,1,1). Initialization works the same as in
single dimensional arrays: cither a list of values containing one value per array element may
be provided, or a single value may be assigned to all elements. Thus, the array A may be
initialized as:

DECLARE A ARRAY(5,9,4) INITIAL(O);
or'

DECLARE A ARRAY(5,9,4) INITIAL(180¢ © .

If we want A to be all zero except that AS(*,*,3) = -, the following initial list ca, be
used:

INITIAL(S#(9#(0,0,- 1,0)))

Ly -
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To understand why this is correct, it is necessary to know that HAL/S stores arrays in
“Row-majoi order’’. This means that the values in the initial list are assign d in the follow-
ing order

ASt1.1.1) = value |
AS(1.0.) = value 2
AS(1,1.3) = value 3
ASt1,1.4) = value 4

AS(i.2.1) = value §
AS(1.2.2) = value 6

et cetera

The way to remember this fact 1s by noting that the nght-most index is incremented the
most rapidly.

Now, to illustrate the usefulness of multi-dimensional arrays. we will return to the
examples of four accelerometer assemblies. The entire set of twelve measurements could
a¢ processed as showr below:

DXAMPLE_2:
PROCHRNG
DECLARE SYRO_INFUT ARNAYI4, ) INTESER;
DECLANE ATY_RATE ARMAY(A, 3} SCALAY;
CECLANE SCAUE ANWAYI3) CONSTANT(.013. .02¢, .8331:
QICLANE 8143 SCALAN INITIALIST.2961%
00 FOR TEFFCAARY T = | T0 &}
OO0 FOR TEMIORARY J 2 1 YO 3i
ATT_RATE 3 GYRO_INAY  SCALE « BIAS:
%) Bed 4
0o;
vo;
CAOSE EXAMLE_2;

XX OUXIITXIZTITXI

In this code, SCALE s still declared as a array of three Since the four instruments are
sdentical, there 15 no need to keep four sets of swale factors. Note, however, that if
GYRO__INPUT .ad been declared as a linear ARRAY(12), we would have to cither make
the SCALE amay also of iize twelve, or introduce more complex code to asso  .e the
right scale factor with each of the twelve measurements. Thus, 3 two dimenaional array
may be a mechanism for performing identical . »esations on a set of similar lincar arrays
just as a lincar arrav may be used to perform identival operations on a set of similar integers
or scalars,

6.1.1 Additional Examples

1) Do a matnx multiply, M1 = M2 M3, wi b M), M. and M3 declared as ARRAYs
ruther than as matrices.
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kY
K}
M| a3
M | rocering
14 CLCIamE ARPRY(S, §7,
L] "1, M2, BY;
™ TECLAPE INTEGER,
M BeW, oL
] 0O FC? PCV = 1 70 3.
L] 0O P07 COL = 1 TO 32
4] Ml T M2 M} M2 m o m M3 i
] roW.CoL ncu. 1 1.CoL rOM,2  Z.CO0L ROIL,3 3.COL
L] | 42-H
hi [{B
noholese taamme 3
]
M) R ¢ th t f Ay of f1ve saal s sttown by the dlustratio
2) Rotate the contents of aiv array of Live scalare s sitown by the diustration
.-j
.-j
nil
- ..j
R I —
. ¢
: 7
. f
n EanALE 4
"} pRzCTAYG
h CECLARE A AFOAY(S) SCAL2P COUBLE;
h} CLCLARE TEMP SCALAR UCLILES
. n LA S
] 1
4
® M 0O FOR YEFPOWARY Y 3 L Y10 45
h A 7 A :
] Y \ 3}
. n [{2-H
L] (S I { 4. H
$ 14
' " | CLOSE EXAMPLL &8
'.l
'l
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3) Find the square root of the mean of the squares of all the values in an array of

6.1A

100 scalars:

EXAMPLE_S:
FROGRAM;
OICLARE A APRAY(100);
DECLARE RMS SCALAR;
DECLARE TOTAL SCALAR DOUBLE INITIAL(O,
00 FOR TEMFORARY N = 1 70 100;

[4
TOTAL = YOTAL ¢ A ;
N
END;

RMS = SQPT(TOTAL / 100);
CLOSE EXAMPLE_S;

XXX BIMAITIXIXTX

| S U —

Exercises

Which of the following d=clarations lists are legal?
If they are legal, what do they create?
If not legal, why not?

a) DECLARE X INTEGER INITIAL(3); .
DECLARE LIST_ONE ARRAY(X) SCALAR INITIAL(3#.1);

b) DECLARE X CONSTANT(4),
DECLARE ARRAY(X),
LIST_ONE SCALAR INITIAL(4#.2),
LIST_TWC INTEGER;

c) DECLARE LIST_TiIREE ARRAY(18) SCALAR INITIAL(10#.,1,%);

d) DECLARE LIST_FOUR ARRAY(9,3) SCALAR iNITIAL(3#.1);
I#3#2),);

¢) DECLARE LIST_FIVE INTEGER ARP \Y(6);

Lo R Aia At WO e A a2
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6.1B a) In example 1 in the text. the minimum, maximum, and mean times required to
invert a 5x5 matrix are computed. Modify the code of the example to include a
computation of the standard deviation. defined as follows:

-
vX. —X)-
Z;X;-X)
n
where X is the mean value of the time. and n is the number of samples.

b) An alternate definition for standard deviation. easily shown to be equivalent
to the above. is:

EXp*
Sl il

Using this formulation. it is nossible to compute the standard dewviation without
saving all the time values in an array. Rewrite the program of part a), eliminating the
array of time values. Is it possible to compute the median value without saving all
the values?

6.1C  In example_2, GYRO_INPUT and ATT_RATE are declared ARRAY(4,3).

The text states that if these variables were declared ARRAY(12) either SCALE
would have to be declared ARRAY(12) or more complex code would be needed.

Keeping SCALE declared an ARRAY(3), modify the code given for example_2
such that GYRO_INPUT and ATT_RATE are declared ARRAY(12), while still
keeping the basic strccture of the code given.

6.1D Instead of the modification of the array shown in EXAMPLE _4, write code that
will perform the following modification of array A.

O]

B
ol 4] 414
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6.2 OPERATIONS ON ENTIRE ARRAYS

Most of the examples in this chapter have relied upon the iterative DO FOR loop to
sequence through the elements of an array. Commonly. the loop has been used to apply
one statement to each array element. i.e.

DO FOR 1 = 1 TO ARRAY_SIZE BY 1I.
(statement)
END

Since this type of operation is so common, HAL/S provides a mechanism for combining
these three statements into one. For example, to add one to each element of an array
could be coded as follows:

DECLARE A ARRAY(10) INTEGER.
DECLARE 1 INTEGER;
DO FOR 1 = 1 TO 10;
ASl = ASI + 1,
END:

or, by eliminating the subscript and the loop. could be recoded as shown below: *

DECLARE A ARRAY(10) INTEGER;
A = A+l

This assignment is an example of an arrayed starement: A statement which operates on all
the elements of an array. Heie the effect is the same as in the form with a loop. i.e. each
element of A 1s incremented. In general, an arrayed assignment statement results whenever
the target (left-hand side) of the assighment is an array. There are two possibilities for the
expression to the right of the = sign. It may be either a simple expression (e.g. **1"" or
*SQRT(3)”) or it may be an arrayed expression (e.g. “{A] + [ or “[A]/2"). In the former
case, every element of the target array is set to the value of the expression. In the latter case,
one additional rule applies: the arrayness (number and size of dimensions) of an arrayed
expression must be exactly the same as the arrayness of the variable to which it is assigned.
This must be true because each element of the target array is set to the corresponding
element of the arrayed expression., An arrayed expression follows the same rules as an
unarrayed expression except that some or all of the variables are arrays (of identical
dimensions). Thus, if

A=CX%+DX+S;

is a legal HAL/S statement involving simple variables A, C, D, and X of any data type,
then:

{A] = [C] [X])? + DIX] + &

*The HAL/S compiler annotates arrays with square brackets in the output listing. Thus, the assignment
statement would appear as [A] ~ [A] +1;

P aaatiand
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where A, C and X are identical arrays of the same data types, is also legal. In general, all of
the anthmetic operators (e.g. +. **. /, etc.) will accept either two simple variables, a simple

variable and an array. or two arrays of identical dimensions.

Note. however. that the machine code generated to correspond to an arrayed statement
still contains a loop: this fact 1s important when assessing the efficiency of a computation

The following shows how the partition form of array subscripting is used. Given:

DECLARE GRID ARRAY(6.6) SCALAR:

a vanety of re-arrangements of the array can be done in a very few statements:

1} Set the top half to the bottom half:
GRID} 10 3+ = GRID4 10 ¢.* :
2) Set the upper left quarter to the lower right comer:
GRID} 10 3, 1 T0 3 = GRID3 AT 4 3 AT 3¢
3y Set the first row to the sum of the other five:
GRIDy » = GRIDs » + GRID3 » + GRID4 » +
GRIDg « + GRIDg v :

4) Set the border to zero:
GRID; « , GRID.‘G . GRIDg + . GRID.‘l =0

This last example is a multipls assignment statement, to which one additional rule
apphes: If one or more of the target vanables in a2 multiple assignment statement is an
array. then all of the target variables must be arrays and of identical dimensions.

One caution is in order regarding assignments like these. Consider the assignment.
GRIDS(1.2 TO #) = GRIDS(1.1 TO #-1):

This statement might be intended to shift the top row one position to the right. Instead. it
sets GRIDS(1,2 TO #) to GRIDS(1.1): the first element is propagated throughout the 1ow.
The reason can be seen when the arrayed assignment is unravelled:

GRIDS(1,2) = GRIDS(1.1):
GRIDS(1.3) = GRIDS(1,2):

This adverse effect can occur whenever a partition of an array is set from an intersecting
partition of itself. Such assignments should always be checked by partially expanding them

by hand.
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Using the feature introduced in this section, we can make the redundant accelerometer
example of Section 6.1 more compact:

M | ExaMPLE_6:

M | PRESP MG

n DECLARE ARRAY(4, 3),

H GYRO_INFUT INTEGER,

] ATT_RATE SCALAR;

" DECLARE SCALE ARRAY(3) SCALAR CONSTANT(.013, .026, .013);
M DECLAFE BIAS SCALAR CONSTANT(S7.290);

" DO FOI TEMECIARY DEVICE = 1 TO 43

[} [ATT_PATE]) = (GYRO_INPUT) [SCALE] « BIaS;
s DEVICE,e DEVICE,»

H [{+H

M CLOSE EXAMPLE_ 6;

Here. we have converted an unarrayed statement in double loops to an arrayed state-
ment in a single loop. Since the SCALE array is of size 3 and the other urrays are 4x3. we
cannot eliminate both loops without getting an arrayness mismatch in the assignment
statement. But it is possible to have an assignment statement with more than one dimension
of arrayness as long as all of the variables match. Thus, we could compute a set of four
attitude arrays:

DECLARE ATTITUDF ARRAY(4.3) SCALAR;
DECLARE ATT_RATE ARRAY(4,3) SCALAR:

from the attitude rates in a single statement merely by"
[ATTITUDE) = [ATTITUDE] + [ATT_RATE] DELTA_T;

where DEITA_T is a SCALAR representing the time between samples. This one state-
ment is functionally the same as:

ATTITUDES(1,1) = ATTITUDES(1.1) + ATT_RATES(1.1) DELTA_T;
ATTITUDES(1,2) = ATTITUDES(1,2) + ATT_RATES(1,2) DELTA_T;
ATTITUDES(1.3) = ATTITUDES(1.3) + ATT_RATES(1,3) DELTA_T;
ATTITUDES(2.1) = ATTITUDES(Z.1) + ATT_RATES(2,D DELTA_T;

ATTITUDES(4.3) = ATTITUDES(4.3) + ATT_RATES(4.3) DELTA_T;
(a total of twelve simple assignments).

In addition to arrayed assignments, HAL/S also allows arrayed comparisons. It is
possible to compare an entire array or arrayed expression. either with a simple variable
or with an identically dimensioned array or arrayed expression. For example, we could
create a2 4 by 4 array showing mismatches between the four sets of ATTITUDE data (each
an ARRAY(3) partition) as shown:

VTP



(L

Operations on Entire Arrays 6-13

N | EXAMPLE_7:

L} FROGRAM;

L] DECLARE ATTITUDE ARRAY(4, 3) SCALAR;

H DECLARE MISMATCH ARRAY(4, &) INTEGER;
" DECLARE INTEGELR,

M 1, g

H DOFOR I =1 10 &;

M MISMATCH = 0;

s 1.1

[ DOFOR J =1 ¢ 1 70 &;

N IF [ATTITUOE ) ~= [ATTITUDE] THEN
s I,» e
n MISMATCH  , MISMATCM :1;
3 401 1.J

n ELSE

n MISMATCH  , MISMATCH z 03
s IS ¢ 1.9

H 14+

" END;

# JCLOSE ExanpLe_7;

In this example, the statement:

“IF ATTITUDES(L.*) 7t = ATTITUDES(J,*) THEN ..."
is an arrayed comparison: Each element of ATTITUDES(L,*) is compared with the corre-
sponding element of ATTITUDES(J,*). If any of the pairs of elements is unequal, then the

comparison succeeds and MISMATCH(LJ) is set to 1. Thus, this statement is functionally
equivalent to:

IF (ATTITUDES(I.1) 71 = ATTITUDES(J.1)) OR
(ATTITUDES(L.2) 71 = ATTITUDES(J.2)) OR
(ATTITUDES(L.3) 71 = ATTITUDESUJ.3N THEN ...

Two arrays are considered unequal if they differ in any element; they are equal if they do
not differ in any element (i.e. they are equal if all elements are the same).

It is also possible to compare an array with an arrayed expression; for instance the
stateinent:

“IF ATTITUDES(1,*) = (ATTITUDES(2,*) + ATTITUDES(3,*)) /2 THEN ..."”

would determine whether or not the first set of readings was equal to the average of the
second two. Finally, an array may be compared with a simple variable or expression, e.g.

IF [MISMATCH] 71 = 0 THEN ,..
or

IF ATTITUDES(2 TO 4,1) = ATTITUDES(1.1) THEN ...
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Regardless of the data types involved, the only comparisons which may be made between
arrayed operands are equal (=) and unequal (71=). This restriction is made for the same
reason as in VECTOR/MATRIX comparisons: The question, “Is A= (1, §7. 3) greater than
B =(2, 4, 3)” has no clear answer.

Exercises

6.2A  Which of the following are legal arrayed statements (expressions):
Where:

A ARRAY(5) D ARRAY(S,5)
B ARRAY(5) E ARRAY(10,10)
C ARRAY(10)

X INTEGER

Y SCALAR

a) A =B:

b) A =C;

) A=X,;

d) D$(*.5) = B;

e) DSy = Y;

N ES(5.*) = B;

g) ES(SAT2,3TO7) = D,

h) A,B = X;

D AY=X

j) CS(S5AT3)=A + B;

k) C$(5AT4) = A + X;

) C$(B) = X;

m) DO WHILE A > X;

n) DO UNTIL A = B;

o) DO UNTIL A 1= (;

p) DO WHILE DS(2 AT 2,2AT3) = ES(2T0O3,3TO4);
q) DO WHILE D$(*,3) = A;

r) DO WHILE As$(1,1) = X;

s) DO UNTIL A = C$(5 AT 4);

t) DO UNTIL B = ES$(7,6 TO #);

6.2B  What are the major benefits of the ability to do operations on entire arrays in one
line of code?

f’#‘*ﬁ'u&ﬁ*?‘w S L L
R S )
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6.3 ARRAYS OF OTHER DATA TYPES

So far in this book, five data types have been introduced. INTEGER, SCALAR, VEC-
TOR. MATRIX, and BOOLEAN. An array of any of these types can be created in a manner
completely analogous to the INTEGER/SCALAR arrays already described. For instance,
one array of each type can be created in a single DECLARE statement:

DECLARF ARRAY(10),
I INTEGER,
S SCALAR,
V VECTOR,
M MATRIX,
B BOOLEAN,

Each of these arrays consists of ten array elements; each element behaves in the same way
as a simple vanable of the same data type. In the case of an array of VECTORSs (e.g. V
above). each array element in turn consists of several components (in this case, three
scalars). Hence, if V were to be completely initialized, 10 x 3 = 30 values would be re-
quired. As in INTEGER/SCALAR arrays, the INITIAL list may contain either a value for
every array clement or a “single™ value (1.c. mitiahzation for one VECTOR or for one
MATRIX). For example.

DECLARF A ARRAY(2) VECTOR INITIAL(1,0,0,1.0.0}:
creates:
1 1
A= 0 0
0 0
as does.

DECLARE A ARRAY(2) VECTOR INITIAL(1,0.0);
and,
DECLARE M ARRAY(3) MATRIX(2,2) INITIAL(1,2,3.4,5,6.7,8.9,10,11,12),

creates:

N (HA HH A

The same initial list could also be used to initialize a three by two array of 2-VECTORS:

DECLARE X ARRAY(3,2) VECTOR(2) INITIAL(1,2,3,4,5.6,7.8,9,10,11,12);
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But in this case, the layout of the data is significantly different:

L (B1EE]
] L] [1]

This is nor merely a distinction of graphical representation. The concepts of Jata type
and arrayness are completely independent. Thus given: :

DECLARE M MATRIX(2,2) INITIAL(a,b,c,d);
DECLARE N MATRIX(2,2) INITIAL (e.f.g.h):
DECLARE A ARRAY(2) VECTOR(2) INITIAL(e,f,g,h);

the assignment state;nents,
. » @
N=MN;

and

.
{A] = M [A];

perform very different operations. “N = M N;" is a simple matrix multiplication as described
in Chapter 2, but “A = M A;” is an arrayed statement: i* does twc (the arrayness) multiplica-
tions of a vector by a matrix. The results would be:

;“ ac + bg af + bh
ce + dg of + dh

— ae + bf ag + bh
[A] = ([cc + df]' [cg + dh])

As indicated above, arrayed statements may be formulated from arrays of VECTORs
and/or MATRIXes according to the usual rules: All of the VI CZTOR/MATRIX operations
may be applied to two simple variables (or expressions), to as. arruy and a simple variable,
or to two arrays of identical dimensions. To see how arrayed operations on these data
types might be used, consider the following situation: An aircraft has a position VECTOR,
MY _POSN, and access to an array of five other vectors, [POSITIONS), which gives the
locations of five other aircraft. The code below, which executes every DELTA _T seconds,
computes the velocity of each aircraft, the distance between each aircraft and MY _POSN,
and the rate of approach of each toward MY _POSN:
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EXAMFPLE_ 8!
FACSIAM;
DECLATE FOSITICNS APPAYIS) VECTOR:
DECLASE OLD_FCSN ARRAV(S) VECICP;
DECLARE A7PAY(S),
VELOZITY VECTOR.
DISTANCE STALAR,

APFRCLCH_PATE SCALAR; /OTHE ANSKERSe/
DECLERE MY_FOSN VECTCA:
DICLAPE CELTA_T STALAP; »
.D
OSTALN PCSITIONS FEOM OUTSICE L 4 b

[VELCZITY) = ({POSITIONS] - {OLD_POSN)) / DELTA_T;
[DISTANCE] = ABVALI[POSITIONS) - MY_FPOSN);
[APFROACH_RATE] = [VELOCITY) . UNIT({FOSITIONS] - MY_POSN):

[otp_posw] = [pPOSITIONS ]
CLOSE E-2mPLE_8;

Each of these assignment statements has an arrayness of five. The second one, for
instance. first subtracts MY POSN from each of the five VECTORS in POSITIONS, pro-
ducing an array of five “distance”™ VECTORS. Then the ABVAL function operates on
each VECTOR m turn producing a scalar distance which is stored into the corresponding
element of DISTANCE,

So far we have been deliberately avoiding any subscripts of arrays of VECTORs and
MATRIXes: This 1s because a long list of subscripts can be rather confusing. For instance,
a three dimensional array of MATRIXes could have up to five subscripts; Given:

“DECLARE M ARRAY(2.3.4) MATRIX(S,5)."

one might expect the first MATRIX to be referenced as “MS(i.1.1,*,")" which is fairly
complicated, though more comprehensible than “M$(J+1,2 AT J- 1,3 AT #-4.2)." To
aid in dealing with these difficulties, HAL/S makes a distinction between array subscripts
and component subscripts. The first three subscripts of M are array subscripts and the last
two are component subscripts. To make subscript expressions more readable, HAL,S en-
forces the following rule: Whencver both array and component subscripts are applied to a
variable, they are separated by a colon instead of a comma. Thus, the first MATRIX in the
array M is actually “*M$(1.1.1.%.*)". Using this syntax, we can re-write the second assign-
ment state ent from the example above the hard way; that is:

[Distance] = ABVAL([POSITIONS} -MY_POSN);

is equivalent to.
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DISTANCE| = SQRT(POSITIONSS(1:1)-MY_POSN,1**2
+ (POSITIONSS(1:2)--MY _POSN)**2
+ (POSITIONSS(1:3)-MY_POSN3)**2)
DISTANCE, = SQRT(POSITIONSS(2 1)-MY _POSN,)**2
+ POSITIONSS(2:2)-MY _POSN)**2
+ POSITIONSS(2:31--MY_POSN3)**2),

DISTANCEg = SQRT((POSITIONSS(5:1)-MY_POSN;)**2
+ POSITIONSS(5:2)-MY_POSNa)**2
+ POSITIONSS(S:3) -MY_POSN3)**2),

Aside from the use of the colon, all of the possibilities for subscripting stil} apply: all
of the TO, AT, and * partitions may be used on cither side of the colon, any arithmetic
expression may be used as a subscript, and a subscripted variable may be used in any con-
teat in which a simple variable of the same data type could be used.

The data type of a subscripted array is not necessarily the same as the data type of the
entire array. For instance, given:

DECLARE A ARRAY(3,2) MATRIX;,

A is a two-dimensi nal array of type MATRIX,*
AS(1,*:*.*) is a one-dimensional array of type MATRIX,*
AS$(1.%:1,*) is a one-dimensional array of type VECTOR,*

and
AS(1,1.1,1) ic a single SCALAR.

1t .» more commos to reference an entire asray element or sub-array than it is to nofer
ence a component of an array element or some sub-arrsy of partitions, etc. Therefore,
HAL/S provides a more compact form for referencing an entire clement of an amay to
which component subscripting couid also apply: When an entire array element is selected,
the asterisks (component subscripts) to the right of the colon may be omitted. Hence,
the tlrst MATRIX in the array A above can be referenced as “AS(1,1:)". The convenience
of this form of subscript is illustrated by the program below which processes an array of
“N” 3.VECTORs and saves the three having tie greatest magnitudes in a second array:

*Esch occurrence of A in the listing will sutomatically be annotated with 30 overpunch reflecting the effect
of subscripting on A,

e —————
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nle cre9:

LI § T

L} CECLASE V ADPZAY(692) VECTCR(S):

" CELLAPE BISTHTEE APRAY(3) VECTOR(S) INITIALIO)N;

”n SECLACE N OINTEGER: /eHNUMBER OF ACTU
'y CJ FC? TRFSCFAFY T 3 1 TO M2 CTEAL INTRICS In ve
o) nacac

M 00 #CR TE 'CPaPY J 2 3 TO 3:

[ 4 - -

" IF A2VALIV ' > ABVALIBIGTNREE ) THENM

s 1 J:

LJ 2H

" DO FUR TEMPOSARY K 8 ) o 1 70 3¢

[ 4 - -

L] BIGTHREE s RIGTHRIE B

s X: Kel:

] 0no;

t - -

M BIGInRRE 3 Vv

S FH 3

L] TXIT IMNER; VAR !

M [1-H ' el d
] [ L 30 {20 £

M me:

" [CLOSE DunrLe 9;

6.3.1 Arrays of BOOLEAN:

BOOLEAN urrays are not substantially different from arrays of other data types. The
only attribute of BOOLEAN arrays that does not directly follow from the previous discus-
sion 1s' Whenever a BOOLEAN array 15 subscripred, the subscript must end with a colon.
The veason for this restriction is that BOOLEAN is actually a special case of BIT strings.**
Like VECTORs and MATRIXes, bit strings may possess component subscripts. Thus, even
though a BOOLEAN has only one componert (a single bit), the colon must be supplied
to indicate that the subscript is an array subscript rather than a component subscript.

Aside from this restriction, BOOLEAN arrays are used in the same way as arrays of
other types; declaration and initialization t2ke the same forms.

DECLARE ARRAY(12) BOOLEAN,
A,
B INITIAL(OFF),
C INITIAL(OFF ON,9#ON,OFF);

and arrayed assignments and comparisens also function as before:

[A}S(1 TO6:) = [BIS(1 TO6:) & (AS(1:) OR [B) $(7 TO=12)):
IFIA] = TRUE THEN ...

One typical use of BOOLEAN arvays is for maintaining status tables. For stance, if
we had a set of redundant altimeters producing an array of sltitude values:

**Bit unngs are fully described in Chapier 13. The word BOOLEAN is exactly equivalent 1o “BIT(1)".
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DECLARE ALT ARRAY(4) SCALAR:

and a “parallel’” ariay containing the time at which each value was reud:
DECLARE TIMETAG ARRAY(4) SCALAR:

then it might be useful to define a boolean array of the same size:

DECLARE DATA_VALID ARRAY(4) BOOLEAN;

each element of which indicates the validity of the corresponding altitude value. One pos

sible form of this reasonableness check is shown below:

TareL_A:
£A030aM3
DECLARE ARRAYiA),
ALT SCALAR,
1IMLIAS SCALAR,
DATA_VALID BCOLEAN:
DICLARE $Cat4® IMITIAL(O),
TOTAL. KMIEN_6000;
BECLARE AVEFAGE 3CALARS
0O FOR TENPCIARY J 3 1 VO 4

DATALVALIO % FALSES
42

tnet
co:

DATA_VALID * TRUE;

4

RPLR_SCCO 3 NUMBEIR 6000 ¢ 11
TOTAL 8 TOTAL o ALT
3

2 B3 VEIMIIT #AI™ LIIIITAIIZTIIII

no;
"o

AVIPASE § TOTAL / WUMOLR_§0ODT
B 7N TEMPCRARY T 3 } T0 o

37 ATA_vALID  THEN
1

IF ABSLALY - AVERASE) > ) AVIRARE THEN
)

4

E AN T BI®™ $#3 BWIeII3

DATA VALIS v PALSE
b 3]

(L1

MOM ME MAVE SCRTINED QUT BATA MMICH IS NEGATIVE OB 2RO,
of T00 LARGE UR TOO OLD OR TO0 FAR FRON INE AVERASE

CLOSE EXAMAE_A

IF MUNTINE - TIMIYAS > ) OR ALY <3 & OR ALY > 50ECO THEN
J J 4

R ]

-y,



-

[T

re® peime

Tt

a4

PR S

Arravs of Other Data Types 621

Exercises

6.3A  Write out graphically the results of the following initializations:

i) DECLARF X A'RRA\'(.?) MATRIX(3.3) INITIALO9%.1.")
i) DECLARE Y ARRAY(3.3) VECTOR(3) INITIAL(9#.1,%)
iti) DECLARE Z ARRAY(9) VECTOR(3) INITIAL(9#.1.*)
v) DECLARE A ARRAY(27) SCALAR INITIAL(9%.1,*)

6.3B  In the previous problem, the imtializations lists were transformed into their graphi-
cal interpretations. Using this data, assign the twenty-first element of the lincanza-
tion of X, Y, Z. and A to a scalar variable, S,

6.3C  Given a variable M, declared MATRIX(3,9):

Assign the 16th through 22nd clements of the lincarization of X, Y, Z, and A to
the 2nd through 8th clements in the linearization of M.

6.3.1A The Sieve of Fratosthenes is an ancient Greek method for computing prime num-
bens, but it stll works today and is quite suitable for a computer. The algorithm
works as follows:

Start with a list of integers from 2 to the largest number of interest. Cross cut all
multiples of 2, then all multiples of 3. and so on. The remaining numbers are then
all prime.

Wnte a HAL/S program to print out all primes less than 100, using the Sicve of
Eratosthenes. (Hint: Use an ARRAY of BOOLEAN type to indicate if 8 number
is prime or not.)

ks
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6.4 FUNCTIONS OF ARRAYS

In Section 6.2 we saw that the statement:
hl
(Al = e

where A and B are wdentically dimensioned arrays, results in each element of A heing set to
the square root of the correspording element of B, As the reader might expect, the same
rosult may be obtained by the statement:

“[A] = SQRT([B]).".

Whenever any of the built-in functions mtroduced so far is applied to an array. the result
s an identically dimensioned array where each clement is the result of applying the function
to the corresponding element of the arrayed operand. Siméarly, the rules for functions of
two arguments, such as MOD or DIV, are the same as for infix operators (e.g. 4+, **, etel),
both arguments may be unartayetd, or one may be arrayed and the other unarrayed, or both
may be arrayed (and of identical dimensions). This usage, the arraved mvocation of a fune-
tion, has been amply dlusteated in the previous section; HAL/S also provides a set of func-
tions that will ondy accept arrayed srguments,

One of the examples in Section 6.1 gathered some statistics on the execution time of
the matrix inverse operation. A SCALAR ARRAY(100), TIME, was filled with 100 samples
of the execution time of an assignment statement. Then the variables T MIN, T MAX,
and + MEAN were set to the minimum, maximum and mean values from the array by
means of a loop. More compact code for the same function is shown below.

T MIN = MIN(TIMF}),

T MAX = MAX(ITIME]);

T MFAN = SUM({TIMED/ 100
tere, the built-tn functions, MIN, MAX, und SUM, reduce an array to a single unarrayed
value. Fach of these functions tand a fourth, PROD) requires an arrayed operand. The

array may be cither INTT GER or SCALAP (of ether precision), and the result is an unar-
rayed value of the same data type and precision.

The SUM function simply adds all of the array elements together:

“SUMULADY
is equivalent to:

“ASE + AS2 4+ ..+ ASnT .
The PROD function multiplies all of the elements together in a similar manner: (ASDH
(ASD) (ASD) . .. (ASn). MIN and MAX both search through the array, and retum the
value of the array clement which is algebraically smallest (MIN) or largest (MAX). All

of these functions will accept a multi-dimensional arr v, but the result retumed is always
unarrayed. Thus, given:

e e et
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[A] = (5.17.-3.2]),
MIN([A]) = -3,
MAX([A]) =21,
SUM(fA]) = 40,and
PROIX[A]) = -§355.

The results will be exactly the same whether A is declared as:
DECLARE A ARRAY(2,2) INITIAL(S,17,-3,21);

or as a linear ARRAY(4).

6.4.1 Shaping Functions

Throughout this chapter we have stressed the fact that a linear array is not the same
type as a VECTOR, and that a two dimensional airay is not the same type as a MATRIX.
Sometimes, however, it is useful to be able to convert one type to the other. For instance,
we might want to use arrayed statemcats to compute the x. y, and z components of a
vehicle’s position from some complex sensor, and then to treat the results as a 3-VECTOR
for further computations. We already know from Chapter 2 that given:

“DECLARE A ARRAY(3) SCALAR,
V VECTOR;"

the conversion can be made by:
“V = VECTOR(AS1,A8$2,A83);"

In fact, the form, “V = VECTOR([A}]):" is completely equivalent. Both the VECTOR
and MATRIX conversion functions will accept any mixture of arrays and simple variables
as operands, provided the total number of elements is correct. When an array is specified
as an operand to one of these functioas, it is “unraveled”, i.e. it is effectively replaced with
a list of its elements. In the same way, an array of vectors can be unraveled for assignment
to a larger vector:

DECLARE AV ARRAY(2) VECTOR(3):
DECLARE VEC6é VECTOR(6);
VEC6 = VECTORg (1AVI]);

The statement above is functionally equivalent to:
ViaTy = AVyu:
ViaTs = AV,

-
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The MATRIX function works in much the same way, a 3 by 3 MATRIX. M, can be assigned
as:

M = MATRIX({AV].(A]):
yielding:

AVS(1-D). AVS(1-2), AVS(1:3)
M= AVS(2:1), AVS(2:2), AVS(2:3)
ASL, AS2 . AS3

To perform the reverse conversion. the INTEGER and SCALAR functions are used.
These functions have already been introduced as explicit type conversions; when they are
used with multiple simple arguments or any type of data aggregate (arrays, VECTORs,
etc.) they return an arrayed result. Thus, using the previous declaration, we can set an array
to a VECTOR as:

{A] = SCALAR(W);

The SCALAR (or INTEGER) function will accept any number of arguments of any arith-
metic type so long as the total number of SCALAR or INTEGER values agrees with the
subscript of the function.

These functions have a number of uses. They may be used to convert the type of data as
shown above, to initialize an array, as in:

[SMALL_PRIMES] = INTEGER(1,2,3,5,7);
or, to re-arrange the elements of an array (hence the term “shaping functions™):

DECLARE Al2 ARRAY(12) INTEGER;
DECLARE A4X3 ARRAY(4,3) INTEGER;
DECLARE A3X4 ARRAY(34) INTEGER;

[A12] = INTEGER,({A4X3]);
[A4X3] = INTEGER4 3(1A12]);
{A3X4] = INTEGERj 4(IA4X31);

When, as in the last two statements above, the INTEGER or SCALAR functions possess
multiple subscripts, the result is a multi-dimensional array; each subscript denotes the size
of one dimension of the array.

Each subscript of the INTEGER or SCALAR function must be computable at compile-
time (i.e. each must be an arithmetic expression involving only literals and CONSTANTS).
In addition to the subscript, the precision specifiers, @SINGLE and @DOUBLE may be used
to change the precision of the operand. Just as in the VECTOR and MATRIX functions,
the precision specifier is used as a subscript and must precede the array dimensions. Thus, an
ARRAY(12) SCALAR, S, can be converted to a 2x6 INTEGER DOUBLE array, I by:

(11 = INTEGER@pouBLE,2,6(5D):
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Exercises

6.4.1A Use vector shaping functions to provide a clearer solution to exercise 6.3C.

B R T TR W C NG,y ey
N

(Note: This problem requires that the reader see Section 6.5.1 of the Language
Specification.)

et x
“

6.4.1B Given the following declarations: : #

DECLARE X ARRAY(2,3) SCALAR INITIAL(2#(1.1,2.2,3.3));
DECLARE V VECTOR INITIAL(.1):

Lowe AN G

State the types and depict graphically the values of the following expressions:
a) INTEGER(X)

b) INTEGER(X,X)

¢) SCALAR(V)

d) INTEGERS$(2,6) (2#X)

e) MATRIX(3#V)

f) VECTORS6(X)
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End of Chapter Problems

The median value of the elements ot an array of odd dimension may be computed
by sorting the elements in increasing order. The middle element of a sorted array is,
in fact, the medan value Write a program to tind the median value of an array of
25 integers. A simple, though not very efficient, sort algorithm may be described
as follows’

Find the smallest clement of the array. If 1t is not the first element, exchange it with
the first, Then find the smallest of the rematning elements. If 1t is not the second
element, exchange it with the second. Continue until the entire array is sorted.

An advantage of this algonthm for the median-value problem s that it is not neces-
sary to sort the entire array, finding the 13th smallest element 1s sufticient

We have made many timings of 3 processes A, B, and C. The results of our timings
are i an array TIM . VALUES declared,

TIM VALUES ARRAY(3.2S) INTEGFR

We now wish to process this information, finding the sum for all 25 timings of each
process A, B, and C, and the sums of the tunes for cach set of tumings for A, B, and
C (1.e, row and column totals). This information is to be put in an array together
with the raw data, and ths array s to be calied TIMING DATA.

Write a segment of code that will create this new array and do the necessary infor-
mation processing.

Include any assumptions made and any new vanables declared.
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7.0 PROCEDURES AND FUNCTIONS

In HAL/S, the concept of a subroutine is realized in two forms: PROCEDURES and
FUNCTIONS. Each is a block of code delimited by a block header and a CLOSE statement.
These code blocks may be nested within PROGRAMS or within each other to any degree;
scoping rules restrict the variables each block may reference, thus avoiding a large class of
potential programming errors. HAL/S PROCEDUREs and FUNCTIONs have two basic
uses: to share a sequence of statements among different paths through an algorithm, and to
segment a programming problem into manageable parts.

7.1 USER DEFINED FUNCTIONS

HAL/S includes a large assortment of built-in functions. These include trigonometnc
routines (SIN, ARCTAN), algebraic routines (SQRT. EXP), conversion funrtions (INTE-
GER, VECTOR) and many others. These functions may be used in expressicas along with
variables, constants and operators; they add to thc power of the language by eliminating
much low level coding and allowing sophisticated operations to be expressed very com-
pactly. The set of built in functions is a part of the language, but HAL/S also allows the user
to define new functions which may then be used in exactly the same way as the built-ins.

One type of operation which occurs frequently in flight software is the limiting of a vari-
able to a given range. A FUNCTION to perform this operation is shown below:

LIMIT:
FUNCTION( VALUE, BOUND) SCALAR;
DECLARE SCALAR,
VALUE, BOUND;
IF VALUE > BOUND THEN
RETURN BOUND:
IF VALUE < -BOUND THEN
RETURN -BOUND;
RETURN VALUE;
CLOSE LIMITE

IXIXIXITTIIXI

The function block is delimited by FUNCTION and CLOSE statements. The CLOSE state-
ment is the same as in PROGRAMs; it consists of the word CLOSE and an optional block
name. The FUNCTION statement contains three pieces of information: the label on the
statement, which defines the name of the function, the names of the formal parameters
(sometimes called dummy arguments), and the return-type of the function.

LIMIT is a scalar valued function of scalars. This fact is denoted by the word SCALAR
on the FUNCTION statement and the declaration of the formal parameters. In general, a
function’s parameters and return value may be of any data type; hence the return type must
always be specified on the FUNCTION statement and the formal parameters must always be
declared. Declaring the formal parameters prior to any local data is good programming prac-
tice and should be treated as a requirement.

The operation of the LIMIT function may be seen from the following illustration, which
is a graph of Y=LIMIT(SIN(X),1/2); for 0K x < § pi/2:

wem cemrer A i < n v S £ YRR ¥ o IO AR £ L1
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Lwmit Function

Functions must always end by executing a RETURN statement. The RETURN state-
ment always has one operand which represents the value of the function. The value returned
may be a variable, as in LIMIT, or any expression of the approprnate data type. Sometimes
the executable code of a function consists of only the RETURN statement, for instance”

IXLXIMEIIXITIII I

[ HASS:
FUNCTION(REST_MASS, SFEED) SCALAR;

DECLARE SCALAR,

REST_MASS, SPEED;

TAY:
FUNCTION(V) SCALAR;

OECLARE ¥ SCaLAR;

DECLARE C CONSTANTI2980000);

2

RETUIN SQRT(Y -~ v / C 4;
CLOSE Tau;

RETUSH REST_MASS / TAUISPEED):
CLOSE MaSS;

Using these functions, the apparent mass of a 100-ton vehicle moving at 20 kilometers
per second can be computed by:

APPARENT_MASS = MASS(100,20),
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As it turns out. the MASS function is not going to be very useful: Twenty kilometers
per second 15 so slow (compared with the speed of light) that the relativistic mass increase
will be lost in the round-off errors inherent in the computation. To find the range over
vhich this effect can safely be ignored, we could execute the following code:

DECLARE V SCALAR:

DO FOR V = 250000 TO 0 BY —-100 UNTIL
ALMOST EQUAL(I MASS(1.V):

END:

WRITE(6) 'THE ANSWER IS ', V:

This code references an additional user function, ALMOST_EQUAL., which could be
written as shown below:

ALNMOST_EQUAL:
FUNCTION(A, B) BOOLEAN;
DECLARE SCALAR,

A B85
DECLARE TOLERANCE SCALAR;
IF 8 <z 0 THEN
TOLERANCE = .000001 ABS(B):
ELse
TOLERANCE = .000001:
IF ABSIA - B) > TOLERANCE THEN
RETUPN PALSE;
ELSE
RETURN TRUE;
CLOSE ALMOSY_EQUAL;

ZTZIIXIIZTXIIZITIXXXX

ALMOST EQUAL is a BOOLFAN-valued function of scalars, as denoted by the word BOO-
LEAN on the function header and the declaration of the formal parameters. Hence the RE-
TURN statements have BOOLEAN operands: TRUE and FALSE.

Since no other data type is automatically converted to BOOLEAN, a BOOLEAN expres-
sion is the only permissible operand to the RETURN statement of a BOOLEAN function.
Likewise, the RETURN statement of a VECTOR or MATRIX function must be supplied
with a VECTOR or MATRIX expression, respectively. Exact matching of data type is not
always required, however; the same implicit conversions that can be performed in an assign-
ment statement can also result from a RETURN statement. These conversions are:

Single to double precision
Double to single precision
Integer to scalar

Scalar to integer

Integer or scalar to character
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7-4  Procedures and Functions

Aside from these exceptions, the value returned by a function must be of exactly the same
type as that specified on the function header.

The function header serves as a declaration of the function, Variables must always be
declared before they are used in expressions; the same rule applies to functions as well.
Therefore, function bodies are usually placed before their first invocation in a program.

However, in the previous example, ALMOST _EQUAL was defined after it had been
used in an UNTIL phrase. In this case it is possible to make a valid HAL/S program without

moving the function body, by DECLARING the fun:tion before it is used. as shown in the
example below:

[EXEMPLEN?
PROSEAN;
CECLARE ¥ SCALAR;
DECLARE ALHOST_EGUAL FUNCTION BOOLEAN; /8Cannny
mss:
FUMCTION{ PEST_I"ASS, SPEED) SCALAR;
DECLARE SCALAR,
REST_MASS, SPEED;
TAU:
FUNCTIONIV) SCALAR;
DECLARE V SCALAR;

CLOSE YAU;

CLOSE MASS:

D0 FOR V = 230000 TO 0 BY -100 UNTIL ALMS;_!WALI!- MASS(1, VON3

ND
WRITECG) "THE ANSKER 18°, Vi
ALNMOST_EQUAL:
FUNCTICNIA, B8) BODLEAN:
DECLARE SCALAR,
A B

.

CLOSE ALMOST_ETQUAL:
CLOSE EXANPLE Ni

2 I OO IIXAAXIIMIZET OOAN T NOO IITIIIXIXITIII

The FUNCTION DECLARE statement has the same general form as a variable declaration
except that the word FUNCTION (with no argument list) precedes the type specification.
Ot course it is always possible to place a function body before its first invocation as was
done with MASS and TAU above, in which case the DECLARE statement is unnecessary.

e R
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Exercises
7.1A What values will be written by the following HAL/S program?

PROBLEM: PROGRAM:
DECLARE | INTEGER INITIAL(]):

PROC!: FUNCTION INTEGER;
DECLARE 1 INTEGER INITIAL(1):
I=1+1;
RETURN 1.
CLOSE,

PRCC2: FUNCTION INTEGER:
I=1+1;
RETURN I:

CLOSE:

1 = PROCI;

WRITE@6) I

1 = PROC2;

I=14+1;

WRITE(6) I;

CLOSE PROBLEM;
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7.1

1)
]
3)
4)
5)
6)
7
8)
9
O
1)
1]
13
14)

What are the syntax errors in the following HAL/S program” (Line numbers are for

reference only.)

PROB2:PROGK \M:
DECLARE X INTEGER:
Y =Y 41

PROCI: FUNCTION INTEGER:
DECLARE Y INTEGER:
X=FROCI.

XsPROC2:

X=X+1.

PROC2. FUNCTION:.
X=X+1:

Y=Y+

CLOSE:

CLOSE.

CLOSE PROB2.
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7.2 ARGUMENTS AND PARAMETERS

The types of the arguments pussed to a function must agree with the duvisratica of the
formal parameters The formal parameters (which some languages terin “tommy argu-
ments”™) are declared in the function body; the function arguments are those expresaons
specified in the function invocation. For example in the invocation:

... UNTIL ALMOST FQUAL(} MASStt, V),

arguments )

The two argumients are scalar expressions. The formal parameters are declared in the func-
tion body:

ALMOST EQUAL: FUNCTION(A R) BOOLEAN;
DECLARE SCALARAB;
DECLARE TOLERANCE SCALAR?

CLOSE,

Formal paramel@

Formal parameters in the functions discussed so far have all been scalars, but it is possi-
ble for them to be of any basic data type: Integer, Scalar, Vector, Matrix, Boolean, Charac-
ter, Structure or Bit. The type of a formal parameter is determined solely by its declaration.
The actual arguments supplied when a function is invoked must be of the same data types as
the formal parameters. The exception to this rvic is that under some circumstances the
actual argument will be automatically (implicitly) converted 10 the type required by the
function. The conversions that are permitted are the same sct vhat are allowed in an assign-
ment statement ~ those that were listed carlier as allowable type conversions in the
RETURN statement.

The declaration of a formal parameter takes exactly the same form as any other
DECLARE statement. The INITIAL and CONSTANT - tributes may not be used, but
otherwise, any attribute is acceptable. A function may have any number of formal param-
eters, including 2¢ro. ‘the following is an example of o .unction in which no arguments

appear:

«r
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7.8 Procedures and Functions

oL

FLILTION INTEGER:
RITUPN § RAKDOM » 33

CLOSL NCLL;

IXA22

The ROLL tunction returns an i wteger in the range | to 6*. It may be invoked as
DO UNTIL ROLL + ROLL = 7;

Functions without parameters usually cither access gicbal data or perform some sort of in-
put. ROLL gets its “input” from the RANDOM function, though reading cards ot sensors is
actually more typical.

A function has only a data type. but formal parameters may have other atiributes. In
particular, a formal parameter may be arrayed. The following exampic is 3 matrix-valucd
function of arrays of vectors. The resulting matrix consists of the dot products of cach air
of vectors.

] T

n | FUNCTICHEAL, AZ) MATRIXIIE, 1003
L] DECLANE ARTAY(10) VECTON(D),
" AL, AZi

L] OECLARE RESULT MATRIXt 1O, 10);
" 00 F0R TEMFLAARS T 8 ) T0 10
" 0O FOR YIMPORARY J » } 10 16;
' - .

] "nsnT A .M
] Led b 3 4
L] MO}

n 0oy

€ .

n RETURN BESULY;

" | CLONL DOTS:

Whencver a userdefined function is applied to an amay, the result is 2n identically
dimensioned armay where each element is the result of applying the function to the corres-
ponding clement of the arrayed operand.

Before leaving the subject of functions, one more very important point must be made:
No function may modlfy eny of its jormal perameters. That is, parameters are viewed as
constants within the function body. As a consequence, for exampie a formal parameter can-

not be used as a Joop control variable since 3 loop control variable is modified on each iters-
tion.

*but nos unifoemly distributed. Sov sxsrcises.

— « T . s et e 7 i
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The primary intent ot this rule s to make HAL/S code casier to read and maintam, In
languages which do not have this restriction, it is not possible to determine wheh varables
are ben g moditied by inspection of a statement like A = USERFUNCIBOC D). In any
language. it is reasonable to assume that A s the only vanable madified. In HAL/S, this
assumption will alway s be correct.

Exercises

7.24 I example 0, ALMOST FQUAL s declared @ tunction in the declare group of the
mamn-program block,

With a wnnor modification to the poogram, this declaration is unnecessary What s
the change”

7.28 1o example 7, g s stated that while ROLL returns an integer wy the range -0, ity
result sonot umormly distributed,

) Why?

b)) Madity the function ROT L so that it is uniformly distnibuted and incorporate it
into a program that wedl count how many times a pair of “dice™ must be rotled
to have 7 come up § times.

7.2C Write a HAL/S program that will read from channel § two arrays of § intepers
apicce, then check if corresponding clements of the two arrays are relatively pnime
(i, i greatest common divisor, or GCD, is 1) I they are not relatively prime,
print out the pair and their GCD.

A standard algorthm for computing the GCD of two numbers iy called  the
Fuclidean algonithm, and may be deseribed as follows:

Start with mtegers m and n, whose GCD is desited. 1t n - 0, then GCDoman) = abso-
lute vitlue of m. Otherwise, let £ be the remainder resultting from dividing m by n. it
r = (0, then GCDEmLn) = absolute value of n. Otherwise, it s the case that GCD(m,n)
= GCIn.r) Since, by the definition of the remainder, r will decrease in abeolute
satue on cach iteration, it will eventually become zero. The algorthng s thus guaran-
teed to terminate.

Note: The algorithim will work for any pair of integers, positive, negative, or zero.
The HAL/S pult-in function REMAINDER (MN)Y gives the remainder when M is
divided by N, as required by the algonthm

7.3 PROCEDURES

A procedure is a cade block similar to a function. The primary distinction s that proce-
dures do not return values. The RETURN statement can be used i a procedure, but no
operand may be provided. When the RFTURN statement s executed in a procedune, control
is returned to the caller. The RE TURN statement is not required in a procedure, as proce-
dures (unlike functions) will retuen iof the ow of control reaches the CLOSE statement,

T i e T P G RO e
\5" v
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The only way to invoke a procedure is via the call statement. Procedure invocations are
not used in expressions,

The CALL statement consists of the keyword CALL followed by a procedure name and
a list of arguments (if the procedure has defined any parameters); e.p.:

CALL PROCI (X.Y.2),

X, Y. and Z are the arguments; the procedure defines its formal parameters just as in func-
tions:

PROCI: PROCEDURE (ABC);
DECLARE SCATARABC,
DECLARE Q VECTOR;

RETURN;
CLOSE PROCI,

Formal parameters to procedures are like function parameters in all regands, and may
not be modified within the procedure. Procedures also have ASS” N parameters, described
below,

Suppose that the DOTS function of section 7.2 where LOC,.L_ VAR is declared a
10 x 10 matrix was typically used in statements like:

LOCAL VAR=DOTS({VILIV2H

In this statement, the DOTS function is not used in an expression, but is directly assigned
into LOCAL _ VAR, In such a case, some inefficiency resuits from coding DOTS as a func-
tion, This is because when the RETURN statement is executed, the 100 scalar components
of RESULT are copied into LOCAL _VAR. A better arrangement would be to code DOTS
ag 2 procedure ard invoke it by:

CALL DOTSUVILIVID) ASSIGN(LOCAL VAR),

The DOTS procedure could be coded as shown below:

o0TS:
PROCEDURE(AL, AZ) ASSISN(RESULT)}
DECLANE ARRAY(10) VECTON D),

Ay A3
ODECLANE RESULT MATRIX(10. 300}
00 FOR TEHPORARY T « 1 TO 10
00 FOR TEMPORARY J ® 1 TO 10}

REBRT =AY A2}
s n J1

NG
L]
CLOSE DOYS)

ITXT OIMAIIIIZIZIIX

[ e
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Here we see an example of an assign parameter, RESULT. The statement, “DECLARE RE-
SULT MATRIX(10,10)." does not create a variable as it did in the function DOTS. but
merely defines the data type of the assign parameter. Each assignment into RESULT
directly modifies LOCAL VAR. Thus, no copying of data is needed.

Since variables used as assign anguments to procedures can be directly modified (rom
the procedure body, no conversions whatsoever are permitted  The fvpe of the variable
passed as an assign argumens must agree exactly with the declaration of the assign param-
eter In the program segment below, A is the only variable which may be passed to P.

DECLARE A INTFGER,
B INTEGER DOUBLE,
¢ SCALAR,
1> ARRAY(2) INTEGER,
P. PROCEDURE ASSIGN(X);
DECLARF X INTFGER;
X=0
CLOSE P,

A procedure may have any number of formal and assign parameters in any combination,
Thus, several values can be computed in a single procedure, as shown below:

STATISTICS:
FROCEDURE(DATA) ASSIGNILO_VAL, HI_VAL, HEAN);
DECLARE DATA ARRAY(100) SCALAR;
DECLARE SCALAR,
LO_VAL, HI_VAL, MEAN;
LO_VAL = MIN([OATA));
RI_VAL = MAXI[DATA ]S
HEAN = SUM({DATA]) / 100;
CLOSE STATISTICS;

ZTITXZTITXXX

This procedure could then be used as in:

DECLARE SAMPLES ARRAY(100) SCALAR;
DECLARE SUMMARY ARRAY(3) SCALAR;
CALL STATISTICS(SAMPLES)
ASSIGN(SUMMARYS$ 1 SUMMARYS$2 SUMMARYS$3):
WRITE(6) "Min, max and mcan are:'.SUMMARY;

Unlike formal parameters, assign paramieters may aiso be modified, as in the following
procedure which sets “AUG _LAST4™ to the averuge of the four most recent values of
INPUT:
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FILTER:

PROCEDUWE( INFUT) ASSIGN(AUG_LAST4, BUFF);
DECLARE SCALAR,
INPUT, AUG_LASTS;
DECLARE BUFF ARRAY(G) SCALAP;
[BUrF ) = {BUFF} ;
1703 2704

BUFF = INPUT;
9

AUG_LASTG = SUM([BUFF]) / &;
CLOSE FILTER:

IX ¢¥YXI BLIIITII

In this example, components of BUFF appear on the left and right sides of assignment state-
ments. BUFF is probably not used by the code which invokes FILTER. It is passed as an
assign parameter because a separate version must be maintained for each user of FILTER.

7.3A

The rules concerning arguments and parameters are summarized below:
I. Arguments may be expressions of any complexity, but their types must match those
specified in the formal parameter declarations. The automatic conversions of preci-
sion and between integers and scalars are performed, however.

Assign arguments must be variables (possibly subscripted, but not expressions in gen-
eral), They must match the types of the corresponding assign parameters exactly.

Formal parameters may not be modified by the procedure or function which
declares them. Assign parameters may be both referenced and modified.

Copying of aggregate data (such as vectors or arrays) occurs only as a resuit of func-
tion returns. If an argument (of any type) will not fit in a machine register or accu-
mulator, its address is passed to the procedure or function. Thus HAL/S uses “call
by name” for aggregate formal parameters as well as for assign parameters, even

though the restriction on modification of formal parameters gives the appearance of
“call by value".

Exercises

Rewrite the improved ROLL function of exercise 7.2B as a procedure, and modify

the surrounding program to invoke it properly. This provides an alternate solution
to 7.2B.

Which of the two solutions is preferable? What general observations does this suggest
about the choice between procedure and function forms, when both are possible?
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7.4 SCOPING RULES

The HAL/S scoping rules for variables may be summarized as follows:

! A variable may be referenced throughout the block in which it is declared and
throvghout any blocks nested in that block. provided that the nested blocks do not
declare another variable of the same name.

2. A variable declared in a nested block cannot be referenced from an outer block.

3. If variables of a given name are declared in several blocks, each reference selects the
version in the nearest enclosing block.

HAL/S prrcedures and functions may be nested within programs, or with:n their proce-
dures and functions to any degree.

This block structuring capability in conjunction with the scoping riles above enables a
measure of functional modularity in the development of software. In other words, HAL/S
allows the collection of related procedures (anc functions) into fun-tional entities (them-
selves procedures or functions). The local resources within these entities, viz. declared vari-
ables and nested procedures become unavailable. actually unseen, to ‘outsiders’. Communi-
cation takes place only on the highest, most visible levels.

Procedure and fun tion names are also affected by scoping rules in that a procedure or
function may be invuked from the immediately enclosing block and from any other blocks
which are nested ir the immediately enclosing block. An exception is that a procedure or
function may not be referenced from within itself: HAL/S does not allow recursion.

The following diagrams illustrate the scoping of block names. In each diagram. the
shaded area indicates the region from which the block marked with an asterisk may be in-
voked:

[Rreape

L
AL
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7.5 ARRAY(*), AUTOMATIC, AND NONHAL

In the previous section, a procedure was written to find the minimum, maximum and
mean of an array uf 100 scalars. The STATISTICS procedure would be more general if it
would accept an array of any size. The routine is rewritten as fcllows:

STATISTICS:

PRCCEOLRE(DATA) ASSIGN(LO_VAL, HI_VAL, MEAN);
DECLARE DATA ARRAY(®) SCALAR;
DECLARE SCALAR,

LO_VAL, HI_VAL, MEAN;

LO_VAL = Minc{oataly;
HI_VAL = HAX({DATAD);
MEAN = SUMUIDATA]) / SIZEC(IDATAYN;

CLOSE STATISTICS;

ITIXXIXIXTIXX

Two changes have been made: First, the formal parameter, DATA, has been declared as an
ARRAY(*). DATA is still a linear array. but its size may now vary from invocation to invo-
cation. Second, the constant 100 in the computation of MEAN has been changed to the ex-
pression SIZE(DATA). SIZE is a built-in function which returns an integer denoting the
number of actual elements in an ARRAY(*).

T'he asterisk may be used as an array dimension only in the declaration of a formal pa-
rameter. An array of any data type may possess this attribute, but all such arrays must be
linear (single-dimensional).

Even though a procedure or function may be written to accept an array of arbitrary size,
the size of each actual argument must still be known at compile-time. Thus, given the
STATISTICS procedure above and the declarations:

DECLARE A ARRAY(1000) SCALAR;

DECLARE SCALARX.Y.Z;

DECLARE J INTEGER INITIAL(60);

The statements,

CALL STATISTICS(AS$(] TO 60)) ASSIGN(X.Y.Z);

and

CALL STATISTICS(AS(6]1 TO #)) ASSIGN(X.Y,Z);

are both legal.

P
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But:
CALL STATISTICS(AS(1 TO 1)) ASSIGN(X.Y.Z).

is nof legal because J is not a constant; i.¢. the width of the partition (I TO J) is not known
until runtime.
7.5.1 Automatic Initialization

The following function will correctly sum the array of vectors, V. only on its first invo-
cation:

vsu:
FUNCTICN{V) VECTOR:
DECLARE V ARRAY(®} VECTOR;
OECLARE TOTAL VECTOR INITIALLOI;
00 FOR TEMPORARY N 2 1 YO SIZE(IV]);

TOTAL = TOTAL ¢ V
N

END;

RETURN TOTAL;
CLOSE VSumM:

ZIAMIT OWIMIMmITIIXR

The problem is that TOTAL is initialized to 2¢ro only on the first invocation of VSUM. One
way of correcting the problem is to add the statement, “TOTAL = 0" before the loop. A
more convenient means of attaining the same result is to replace the declaration of TOTAL
with:

DECLARE TOTAL VECTOR INITIAL(O) AUTOMATIC,

The AUTOMATIC attribute controls the manner of initialization of a variable: An
AUTOMATIC variable is set to its INITIAL value on each entry to the contcining code
block. In effect, the compiler generates an assignment statement for each automatically
initialized variable immediately atter the declare group of the contaming block.

It is important to remember that by default, initiatization is STATIC (the opposite of
AUTOMATIC). If the AUTOMATIC attribute is not specified, initialization occurs only
once, at the time when the program is first loaded.

7.5.2 The NONHAL Attribute

Sometimes it is desirable to program an application in a mixture of HAL/S and non-
HAL/S code, ecither to capitalize on existing software or to make machine-dependent
operating system interfaces which are not availabie in HAL/S. When the non-HAL code
consists of Subroutines (procedures and/or functions) there is a convenient way of making
them accessible to HAL/S, This is the NONHAL attribute, used in a declare statement. An
cxample is:

DECLARE CPU COST FUNCTION SCALAR NONHAL(I):

NCed b the e
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The form of this statement is essentially the same as the declaration of 2 HAL/S function
that will be referenced before it is defined. The only difference is the NONHAL attribute.
which indicates that the function body is not included in this compilation. Note that the
data type of a NONHAL function must still be supplied.

A similar form may be used to define a procedure written in some other language, e.g.:
DECLARE PEARSON_CORRELATIONS PROCEDURE NONHAL(2);

Since a procedure has no data type. none is supplied in the declaration. NONHAL proce-
dures and functions may have formal parameters: the number and types of these parameters
is not specified in the declaration, and in fact, may vary from call to call. No type checking
is performed on the arguments to a NONHAL procedure or function, and these blocks may
even modify their input parameters: hence, great care should be takei. when using the
NONHAL attribute.

The operand to the NONHAL attribute. which consists of a positive integer. indicates
the particular language in which the subroutine was written. The association of each number
with a particular Janguage is implementation dependent, and some compilers may not sup-
port NONHAL at all.

These statements may #not be used to interface separately compiled HAL/S modules. A
means of sharing HAL/S subroutines between separate HAL/S programs will be presented in
Chapter 1 1.

End of Chapter Problems

TA
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.

- onsider the above nesting diagram that depicts the scoping of blocks.

For each of the procedure blocks numbered 2-6, write the numbers of the blocks
from which that pricedure may be invoked.
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As in exercise 2B, a ball is thrown from a height of 110 feet with a horizontal veloc-
ity of 4 ft/sec. Suppose that it now rebounds to 75% of its previous height on each
of 10 bounces, and consider the following skeleton of a program to compute the
time until the tenth bounce:

DO FOR I = | TO NUMBER_OF _BOUNCES:
DROP_TIME = TiMi TO_DROP (HEIGHT):
CALL HORIZ_MOTION (DROP_TIME) ASSIGN (HORIZ_DIST);
TIME = TIME + DROP_TIME;
WRITE(6) ‘BOUNCE’, 1, ‘TIME’, TIME, 'HORIZONTAL

DISPLACEMENT’, HORIZ_DIST;

CALL BOUNCE ASSIGN (HEIGHT, BOUNCE_TIME);
CALL HORIZ_MOTION (BOUNCE_TIME) ASSIGN (HORIZ_DIST):
TIME = TIME + BOUNCE_TIME;

END:

CLOSE DROP;

Complete the program by writing all necessary declarations, initializations, proce-
dures, and functions.

In exercise SA, a program was written to compute the value of a definite integral of
the SQRT function using Simpson’s rule. Modify that program to compute the value
of a definite integral of a function of the form f(x) = ax* + bx? + ¢cx + d. Assume

that the quantities a, b, c, d, initial, final, and epsilon are available in that order on
channel §.

The increased modularity and readability brought about by the use of procedures
and functions is nct without cost. Procedure and function calls are typically some-

what expensive in terms of computur time, and their over-use can unnecessarily slow
down a program.

For example, in problem 7B, the procedure HORIZ_MOTION could easily be climi-
nated. Furthermore, on the last bounce, the height and time of the next bounce ace
computed, even though they will never be used. Assuming that efficient use of com-

puter time is here of primary importance, rewrite the solution so as to eliminate
these two sources of inefficiency.

[
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8.0 1/0 AND CHARACTER STRINGS

The HAL/S 1/0 statements, READ, READALL, WRITE and FILE, are designed to pro-
vide a convenient interface to external devices used for software checkout and non-flight
applications. The READ, READAL L, and WRITE statements perform sequential character
1/0 to such devices as card readers and line printers, The file statement transfers binary
(unformatted) data to and from random-access devices such as drums and disks. These
statements are all designed to provide the basic capability of getting data in and out of a
HAL/S program with a minimum of programmer effort.

For sophisticated ground applications, the simplicity of these statements can be a dis-
advantage when highly formatted output is required. To give the programmer complete
control over input and output formats for those applications that require it, HAL/S provides
a comprehensive set of character manipulation facilities. Any data type may be converted
to a character string; operations on the resulting string can produce any desired representa-
tion of the original data.

Although most flight computers do not have interfaces to character devices such as line
printers, it is common practice to use ground based computers for early checkout of HAL/S
code. HAL/S 1/O statements can then be used to address the wide runge of external devices
(peripherals) found on such computers.

8.1 THE WRITE STATEMENT

The WRITE statement has already been used in the examples of the previous chapters.
A typical instance was:

WRITE(6) ‘THE ANSWER IS’, V;

Although this statement was not fully described at the time, the assumption was made that
the string “the answer is” and the value of V (a scalar) would come out on some sort of
printer. The following paragraphs describe the manner in which the output is sent to a
particular device and the format in which it is printed.

The routing of output to a particular device is controlled from outside of the HAL/S
program. Each WRITE statement specifies a channel number (in this case, channel 6).
A channel may be thought of as a virtual device or as a port between the HAL/S program and
somc peripheral. HAL/S defines ten channels, numbered zero through nine, which are
used in READ and READALL statcments, as well as in the WRITE statement. At the
HAL/S level, all channels are equivalent; it is only at execution-time that the channels are
associated with actual devices. This association is made in an implementstion dependent
manner: it is usually done through some type of “job control language” or through com-
mands at an interactive terminal. The appropriate HAL/S User's Manual must be consulted
for details. In most systems, however, channcl 6 is automatically associated with a line
printer.
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The channel number used in HAL/S 1/O statements must be an integer expression which
is computable at compile time (i.e., composed entirely of literals, constants, and the basic
arithmetic operators). It is good practice to give a name to each channel via the REPLACE
statement, as shown below-

REPLACE PRINT BY “6™

REPLACE CARDS BY “5™

REPLACE TERMINAL BY 7™

DECLARE I INTEGER, S SCALAR. D SCALAR DOUBLE;

READ(CARDS) 1, S, D:
WRITE(PRINT) I, S, D:
et

Naming channels in this way has several advantages: First, if the channels are well named
the program will be more readable. Second, it is easier to change the number in one
REPLACE statement than the channel numbers in a collection of WRITE «tatements.
Finally, it is possible to find all of the I/O statements which use a particular cnannel by
looking up the cross reference for the chann«l name. The naming could altemnately be done
by declaring integer CONSTANTSs.

After the channel number, the remainder of the WRITE statement consists of a series of
expressions. There may be any number of cxpressions of any datatype; any construct
which has been termed an expression in this book may be used in a WRITE statement. In
the previous examples, the expressions have all been simple variables, but they may be of
any complexity. Thus, values that are needed cnly for (utput need not be stored in a
variable. A program to compute one of the roots of a qurdrztic equation given scalar coeffi-
cients A, B and C, might consist only of:

READ(S) A, B, C;
WRITE(6) (-B + SQRT(B**2—4 A ())/2 A:

When any type of data aggregate (c.g., VECTOR, ARRAY) is written, it is first unravcled
into its individual integer, scalar, character, or bit components. These components or array
clements are then transmitted to the extemmal device. The sequence is the same as was
described in conjunction with shaping functions in Chapter Six. For instance:

DECLARE M ARRAY(2) MATRIX;
WRITE(6) M:

results in the components of M being transmitted in the sequence:

MS(1:0,1).MS(1:1,2),M8(1:1,3).M8(1:2,1),M8(1:2,2)...NS(}:3,3),
MS$(2:1,1)...M8(2:3,3).
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When a data aggregate i« unraveled in a WRITE statement, the original structure may not
be retained.* In the absenc* of the 1/O control functions (discussed in the next section),
all of the output from a single WRITE statement is placed on as few lines as possible, with
only spaces separating the operands and the elements of each operand. The number of
spaces placed by default between successive values (termed the defuult tab) is implementa-
tion dependent.

After the operands of the WRITE statement are reduced to a sequence of Integer, Scalar,
Character, or Bit components, each component is converted to its standard external format,
which is a character representation of its value. Each of the four basic data typ2s above has
its own format.

The standard external format of an integer is a string of decimal digits, preceded by a
minus sign if the integer is negative. Enough leading blaaks are appended to make the length
of the resul* g string constant for all integers of a given precision. This standard length
varies from «_mpiler to compiler, but is always large enough to contain any possible integer
value. Leading zeros are never included in the representiiion of an integer. The following
table shows the output format of a few intcger values for a compiler which assumes an
integer field width of 6.

Value Standard External Format
0 0
256 256
-32.768 -32768
] hJ

Double precision integers have the same format, except that the field width is approxi-
mately twice as large.

The standard ¢: emal format cof scalars is scientific notation in a fixed-width field.
Scalars always take the form “bd.dddE2dd” or “-d.dddEzdd”, where each “'d" represents
a decimal numeral. Exactly one non-zero Jigit always appears to the left of the decimal
point and positivc numbers are always presented with a leading blank. The number of digits
to the right of the decimal point and the number of digits in the exponent are constant for
any particular version of the compiler. These numbers are always chosen so that all of the
precision contained in the scalar can be presented. The fixed field width simplifies the
writing of code to re-format scalar values as will be seen in subsequent sections. The fol-
lowing table illustrates the output representation of various scalar values on a computer
with an eight digit mantissa and a two digit exponent.

Value Standard External Format
] 3.1415927E+00
2 5.0000000E -01
-3 1/8 —3.1250000E+00
0001 1.0000000E --04
-1,000,000 —1.0000000E+06
0 00

———
*Sume implementations will prnt matrices one row per line automatically, but this is not s language
requirement.
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Note in the table above that zeso is treated as a special case. Double precision scalars are
presented identically except that the standard width of the mantissa is greater.

The remaining data types, CHARACTER and BIT (including BOOLEAN), each have
two standard external formats. These formats are very similar, but one is more suitable for
printed listings and the other 1 morc suitable for output that is to be read back in by
another HAL/S program.

The programmer specifies which format is to be used for character and bit output by
means of the device directive. The device directive is not 2 HAL/S statement: it is a ccn-
mand to the compiler which affects the way that subsequent WRITE (and READ) state-
ments are interpreted. The device directive specifies whether the output on a particular
channel is paged (the format suitable for printing) or unpaged (the machine-readabie
format).

Paged output is organized into lines and pages. Since the WRITE statement is most
frequently used to obtain printed diagnostics and results, paged output is generally the
default.

Unpaged output is simply a stream cf data values in a format compatible with the
READ statement. To designate a particular channel as unpaged, the device directive is used,
as shown below:

column 1 channel number 0-9
4 '}
D DEVICE CHANNEL=6 UNPAGED

1

no semicolon
Compiler directives rlﬁy vary from implementation to implementation. All present
compilers include the device directive as shown sbove. Other directives are described in

HAL/S Users Manuals. These directives should not be considered as executable statements:

the presence of a device directive anywhere in 2 compilation governs a// uses of the speci-
fied channel.

The standsrd extemal format of character strings on a paged file is simply the content
of the string, with no conversions or padding. On an unpaged file, the character string is
enclosed in single quotes (‘). The output from the statement:

WRITE(6) 'THE ANSWEK IS’, V;
will be:

THE ANSWER IS 7.5836210E+08

- ‘THE ANSWER 18’ 7.5836210E+08
on an unpaged file.
. St »
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The siandard external format for bit strings is a serics of ones and zeros. As in character
strings, bit output is enclosed in quotes on an unpaged file. A BOOLEAN consists of a single
bit, so there are only four possible outputs as shown below.

Boolesn Value Paged Output Unpaged Output
TRUE/ON 1 1
FALSE/OFF 0 0

Longer bit strings (see Cliapter 13) are output witit a blank between every set of four bits to
enhance readability. The value HEX'1 234" would be output 2s 0001 00100011 0100 on a
paged file, and as ‘0001 0010 0011 0100° on an unpaged file.

For character and bit types, only the unpaged format is compatiblc with the READ
statement. Since these types are of a variable length and may contain embedded blanks,
the quotes are needed to indicate the end of one value and the start of the next.

in summary, the WRITE statement wil! evaluate a list of cxpressions of any data type,
convert the resulting values to their standard external formats, and transmit these to the
Jdevice which has been associated with the specificd channel. There are no restrictions on
the expressions in 2 WRITE statement, and in no case will any data be lost in the transla-
tion to the standard external form. As a result, the WRITE stetement is extremely easy
to use if the format of the output is of little concem; this makes 1t convenient for diagnos-
tics, but less appropriate for report generation.

Exercises

8.1A Why is it generally considered good programming practice 1o give a name to cach
channel for 1/O functions and use the HAL/S REPLACE statement to assign the
channel number?

8.1B  What happens when an executing program encounters 4 HAL/S WRITE statement
followed by a list of expressions? What limitaticns are there on the expressions
that are Jegal in 8 WRITE statement?

8.1C  Given the following declorations:

DECLARL S SCALAR,
! INTEGER,
YV VECTOR,
M MATRIX,
B BOOLEAN,
C CHARACTER;
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Wiuch of these WRITE statements will produce output compatible with the HAL/S
READ statement

a) Ona PAGED device?

b} On a UNPAGED device?
1) WRITE® S, I V. M:
2) WRITE(6) . = . L. V = ', V,
3) WRITE(6) VS$i, V$3, V$2, B
4) WRITE(6) B, C:
5) WRITE(6) S, M, V$Q2 TO 3), |;

8.2 1/O CONTROL FUNCTIONS

When the statement:

WRITE(6) M.

where M is a matrix, is executed, the three-by-three structure of M is lost. The arrangement
of the components of M depends only on the field width of s scalar, the amount of the
default tab, and the maximum number of characters per printed line. It the width of a
scalar is 13, the default tab is § and a line is 132 characters, then seven components will
be printed on the first line, and the remaining two on a second line, To cbtain a better
arrangement, the following WRITE statement may be used:

WRITE(6) MS(1,*), SKIP(1), COLUMN(). M$(2,*). SKIP(1), COLUMN(D),
M$(3.*):

This statement will cause one row of the matrix to be printed on each output line.

SKIP and COLUMN are I/O control functions. Syntactically, they resemble other
functions, but they may only be used as arguments to the sequential 1/0 statements, WRITE,
READ, and READALL. Each has a singlc argument which may be any integer or scalar
expression: if the expression is scalar-valued, it is rounded to the nearest integer. These

functions do not return a value, but only control the location in a file where subsequent
data will be read or written.

The 1/0 control functions may be thought of as moving a read/write mechanism across
a two dimensional medium, The SKIP, LINF, and PAGE functions cause vertical movement
and the COLUMN and TAB functions cause horizontal movement. In the example above,
“SKIP(1), COLUMN(1)" moves the write mechanism to the bexinning of a new line, The
SKIP function causes relative movement (down one line), ani the COLUMN function
causes absofute positioning (to the first column of the new line)

The sequence, “SKIP(1), COLUMN(})", is implied at the beginning of each WRITE
statement, This automatic positioning will be overridden if the WRITE statement has
explicit horizontal and vertical positioning functions prior to the first data operand. If only

horizontal or ventical positioning is specified, then the default movement is partially over-
ridden. In the statement:
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WRITE (6) COLUMN(10), MS$(1,*):

the default horizontal positioning to column one is overridden, but the default vertical
positioning to the next line is not. Likewise, the statement:

WRITE(6) MSti,1). TAB(12), M$(1,2), TAB(12), MS$(].3):
would leave twelve blanks between the end of one component and the start of the next.
Unless overridden by explicit horizontal motion commands, a TAB function is implied
between each pair of data operands to the WRITE statement. The amount of the default
TAB is implementation dependent.

Using these functions, an array of matrices:

DECLARE AM ARRAY(2) MATRIX(3,3):

can be output in a readable form by:

WRITE(6), SKIP(2), COLUMN(10), AMS$(1:1,*), TAB(20), AMS(2:1.*). SKIP(1),
COLUMN(1), ‘AM=", COLUMN(10), AMS(1:2,*), TAB(20). AMS(2:2,*), SKIP(1),
COLUMN(10), AMS$(1:3,*), TAB(20). AMS(2:3,*). SKIP(2);

yielding:

AM =

|11
1]
|11
|1

N— Neum— o’
AMS(1:) AMS(2:)

The effect of the remaining I/O control functions, LINE and PAGE. depends on whether
they are used on a paged or an unpaged channel. On a paged channel, the LINE function’s
argument must be in the range one to the maximum number of lincs per page. The device
mechanism is moved forward until the current line number is the same as that specified in
the LINE function. This may cause the device mechanism to cross a page boundary. The
most common use of the LINE function is to advance to the top of the next page, as in:

WRITE(6) LINE(1), ‘This is a page header’;

When used on an unpaged channel, the LINE function causes movement to an absolute
line number within the entire file.

The PAGE function may only be used on paged files. PAGE(n) results in relative move-
ment by “n" pages; the current column and line numbers are not affected. A typical use of
the PAGE function is to skip over unwanted pages of header on input.

SEB S s e s aT

NN



NN PO and Cheeaeter Strings

The preceding paragraphs apply equally to all implementations of the HAL/S lunguage.
The prancpal vanations between implementations are the number of columns per line

(and lines per page) and the result of requesting backward moventent of the read/write
mechamsm,

TR

The statement

WRITF(6) ‘RFSULTS FOLLOW. TAB( 14, ' ___."

may have any of several results, depending on the compiler in use. On some systems, the
two character strings may both be printed in the same columns of the same line, vielding:
RESULTS FOLLOW. On other systemns. the second character string may overlay the first.
viclding just the underscores. Similarly. backwards line movement may or may not be
supported and may be device dependent. the effect of executing SKIP(--1) may vary from

system to system. The relevant User's Manual should always be consulted before requesting
negative column or hne movement.

The followtng table summarizes dhe 1/Q control functions

1/0 Control Function Operation

SKIP(K» Relative line movement

Line = (Line + K) mod page size
Absolute kne movement

Line = K

Relative column movement
Col = Col + K

LINF(K)
TARKK)

COLUMNK)Y Absolute column movement

Col = K
Relative page movement
Page = Puge + K

PAGE(K)

Exercises

8.2A  Consider the tollowing HAL/S statements:

. DECLARE ARRAY(}) MATRIX, MAT ARR!, MAT ARRY;

. WRITE(6) MAT _ARRI. MAT ARRX:

v

v
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a) Describe what the resulting output would look like.

b) Change the WRITE statement such that the resulting output will be formatted
as thus:

[MAT_ARRI,.]
[MAT_ARRI;.]
(MAT_ARRI3.]

[MAT_ARR2, ]
{MAT_ARR2,.]
(MAT_ARR23.]

8.2B For cach of the I/O control functions below, which of the following statements
apply to its use in HAL/S WRITE statements?

a) default characteristics (implied unless overridden)
b) causes absolute vertical movement

¢) causes relative vertical movement

d) causes relative horizontal movement

€) causes absolute horizontal movement

1) LINE(l) 5) COLUMN(1)
2) SKIP(1) 6) SKIP(0)

3) TAB(20) 7) SKIP(5)

4) PAGEQ2)

8.3 THE READ STATEMENT

The syntax of the HAL/S READ statement is also quite simple. Some examples (e.g.,
“READ(5) A, B, C;”) have already appeared in this manual; the general form is not much
more elaborate. The READ statement consists of the word READ and a channel number
followed by a list of variables and/or I/O control functions. The 1/O control functions used
in a READ statement work the same way as in the WRITE statement.

When any type of data aggregate appears in a READ statement, the components are
filled in the “natural sequznce™; i.e., in the same order in which they would be written.
In the code:

DECLARE A SCALAR, V VECTOR, I ARRAY(2) INTEGER DOUBLE;
READ(S) A, V. [

data from the external file will be assigned in the sequencs:
A, VS§1, VS$2, V83, 181, IS2.

If the file was originally produced (stored on disk, punched on cards, etc.), by a HAL/S
WRITE statement, its contents will be in the appropriate format for the READ statement.

Except for character and bit strings on paged files, the standard forms produced by the
WRITE statement are all acceptable on input.

Input data prepared manually may be written in free format; all of the following lines
are acceptable input for the READ statement above:
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a) 0.0.0.0.0.0
by t 3ES 3.271E+06 001 24 2
¢ 1,234 56

The examples illustrate several points. First, it is not necessary to distinguish between
mteger and scalar values. Any sequence of characters which comprise a valid integer or scalar
literal (as described in Chapter Two) 1s suitable to be read into either an integer or a scalar:
however, not-integral values read into an integer will result in a runtime error.

Individual values (in this case, numbers) in the input file must be separated by blanks
or other delimiters. One or more blanks, a single comma, or a single comma and any number
of blanks are all equivalent. Multiple commas are a special case, which indicate “missing
data™. If the inpnt file contained

oo 23,405

then the value of the second scalar in the READ statement above (VS1) would not be
changed.

When u semicolon is encountered in the input stream, the current READ statement is
terminated. 1f the mput consisted of':

LS, L6

then only two values would be read. regardless of subsequent vatues and punctuation in
the file. This fact can be usetul whean a program must process a variable number of input
values. For instance, a program to sum a sequence of numbers could be coded as:

ADD:
PROGROAN;
DECLARE TOTAL SCALAR INITIAL(O) AUTOMATICS

DECLARE A APRAY(100) SCALAR INITIALIO);
READIS) [A];

DO FQR TEMPOPARY I = 1 7O 100 UNTIL A = 0;
1

TOYAL = TOTAL + A ;
1

35 H
WRITE{6) 'TOTAL IS ', TOTAL;
CLOSE ADD:

IXX U wIrIxIxxIxX

One valid input to this program could be:
395, - 1731, -9.93, §72.35, -150, +1.10, -45, +7.50,

In this case, the READ statement would terminate when the semicolon was reached, leaving
the rest of the array (AS (9 TO 100)) equal to zero.

gﬁauixﬁamwﬂﬁvu
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As illustrated above. a READ statement may take data from many lines of a file. Lines
will be processed until either a semicolon is reached or values are found for all of the oper-
ands of the READ statement. The end of each line of input (e.g., card column 80) serves
as a delimiter equivalent to a blank. Hence, individual values may not be split across lines.

As in the other sequential 1/O statements, WRITE and READALL, a SKIP(1),

COLUMNI(1) operation is im;lied at the beginning of each READ stat:ment. This may be
overridden by the same means used in the WRITE statement;eg.,

READ(5) SKIP\Q), TAB(O), X;
can be used to read data to the right of a semicolon which terminated the previous READ
statement. If the input data happens to be stored in fixed catd columns, then the TAB and
COLUMN functions can be used to skip over unwanted data.

Any attempt to read past the end of a file will result in a runtime error. Chapter Ten
describes a mechanism for recovering from this and other errors.

EXERCISES
8.3A Let the program ECHO begin as follows:
ECHO: PROGRAM;
DECLARE INTS ARRAY(3) INTEGER INITIAL(]),

SCALS ARRAY(3) SCALAR INITIAL(0);
READ(5) INTS, SCALS:;

What will INTS and SCALS contain given the following inputs?

a) 8, 7, 655, -1, 2.25E2, 4;
b) -1E-1,,,7.2;
¢) 249,,2.51,249,.2.51;

8.3B  Suppose input intended for the program ECHO of problem 8.2A has been formatted

as follows:

Col. 1 Col. 8 Col. 78
4 4 {
INTS: 3 4 5 00000001
SCALS: 6.1 7.2 83 00000002

Modify the READ statement in ECHO to ignore the labels on the left and the
sequence numbers on the right, and read in the values for INTS and SCALS
properly.

PRETPE

R
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8.4 CHARACTER STRINGS

A HAL'S character variable may contain g stang of charactens, the number of charaes
ters » allowed to vary at runtume from zere up to 4 masimum speaficd in the declarution
of the vanable. The character datatype s declared m the same general way as other data
IV pes, o,

DECLARL STARS CHARACTL R(3) INITIALC* Y,

Ihe vanabie STARS s g charucter string of maximum length five and imitially con-
tarng five astenshs, Fach character vaniable has both a maximum leagth and a current
length, The current length s adjusted every fume the variable is assigned. though it can never
tecome greater than the declared maximume. I the leagth of the string on the right-hand
side of an assignment oxceeds the manimum feagth of the tanget variable, charaets s are
truncated fromn the nght betore assignment. In the code below, RATING starts with a
length of zero s tiahized to the onull stnag), but after the assignment the current

length becomes three

DECLARF RATING CHARACTER(S) INITIALCH.
DECLARE QUALITY INTFGER INITIALL),
RATING = STARSStI TO QUALITYY

As shown, the general formy of character subsenpting is the same as vector subscripting,
except that the width of a partition does not have to be hnown at compule-time.

In addition to subseripting a character stang to pick out a singe character or a sub-
string, HAL'S provades an operator for putting two stnngs together. Plus s the catenation
operator, denoted by the heyword “CAT" or by the sign 1 | 7, The eftect of this operator
is to append the right-hand operand to the end of the left-hand operand:

CABC 1 DEE
yichds.

*ABCDEE

Character strings may also be compared with cach other, as in

I RATING NOT = '***" THEN FNIT.
and may be compared for “greater than™ or “less than™ wn ander to sort thew alphabetically .
The latter capability is affected by the collating sequence and s therefore wplementation-
dependent. More details can be found in the appropriate Users Manual.

HAL/S also provides a set of built<in character tunctions (listed in Appendiy A). The
following paragraphs describe some of these functions as well as providing some practical
examples of character operations.

o b T S =T
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One of the major uses of character variables and operations in HAL/S is formatting out-
put. In the WRITE statement below, the value of the integer variable N will be inserted
in a line of output:

DECLARE N INTERGER:

WRITE(6) ‘'THE ANSWER IS . TAB(0),N,TAB(0), FPS",
If N is six, the output from this statement will look like:
THE ANSWER IS 6 FPS

‘This statement illustrates an important rule: whenever an integer or scalar is used in a
character expression it is converted to its standard external format (a character string).
The standard external format of an integer includes leading blainks. These blanks can be
removed by means of the TRIM built-in function, as shown below:

WRITE(6) ‘THE ANSWER IS ", TAB(0),N,TAB(0),* FPS§™
This statement will produce:
THE ANSWER IS 6 FPS

The TRIM function removes all leading and trailing blanks from a character string. Its argu-
ment must be a character expression; thus N is converted to character before the invocation
on TRIM in the statement above.

Similar character functions are RJUST and LJUST, which add leading and trailing
blanks, respectively. Each of these functions takes two arguments, a character expression
and a field width, These functions right or leftsjustify the value of the character expres-

sion in a field of specified width. With N= 6, RJUST(N,2) yields * 6" and LJUST ('XYZ2"4)
yields ‘XYZ °.

Note that within the quotes of s character literal, blanks are treated the same as any
other character. Any character may be used in a quoted string.

[l
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Like vanables of any data type, character stangs may be arrayed. The following fune-
tion could be used to display the value of a boolean (B) in the tormat specified by an
integer (TYPH)

| sTare:

M | FUNCTIONIB, TYPE) CHARACTER(S);

L] DECLARE B BOOLEAN.

] TYFE INTEGER:

L OECLAPE YES ARRAYI®) CNARACTER(S) INITIAL('TRUE*, °'ON', 'OPEN', ‘'VALID'}S
" DECLARE MO ARRAY(®) CNARACTER(S) INITIALL'FALSE', 'OFF', 'SHUT', 'ERROR');
3 .

L IF B THEN

4 .

N RETLRN YES H

S TPE:

] ELSE

t .

" RETURN NO H

s TYPE:

H | CLOSE STATE:

Thus function could be involed as shown below

DFCLARF BOOLFAN INITIALWOFE)., VALVE. POWER,
WRITEF(0) "VALVE="STATE(VALVEL POWER="STATF(POWER.2),

his example would produce.
VALVE=SHUT POWER=OFF

The concepts of maximum length and current length apply to cach element of an armay,
and to the value returned by a character function. The maximum lengths ot all elements off
a character array are equal, but the current lengths may vary. Thus, the length of the value
returned by STATE can vary from two to five, The mavimum length on the function
header can never be eaceeded, however, it “RETURN "ABCDEFH"™ was executed, the
string would be truncated at the right yielding "ABCDE".

It should be noted v the example above that the nt element of a character array such
as YES s represented by “YESS$(N.” and not “YESSN™. The trailing colon must be sup-
plicd to indicate the absence of component subscripting just as in arrays of vectons, matrices
and Bit Strings (Booleans). As before, both array and component subscripts may be supplied
it needed. YESS(3:2) is the second character of the third element of YES. ‘P,

A few examples of automatic conversion to character type have appeared above, It is
also possible to explicitly convert to character type via the CHARACTER shaping tunction.
This function is syntactically identical to the INTEGUER, SCALAR. VECTOR, and MATRIX
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shaping functions described previously. It converts its argument or arguments to their
standard external formats. It has an additional form that allows conversions to octal or
hexadecimal as shown below:

WRITE(6) CHARACTERS(¢OCTXBIT(NY),
If the integer N is equal to 29, this statement will produce the output:

‘0000000035 °.
When the CHARACTER function is subscripted with a radix (@OCT or HEX), its oper-
and must be a bit string. The BIT (unction above is not fully described until Chapter 13,
but in this case it merely returns a bit pattern equivalent to its argument.

Anothur use of the character manipulation facilities is reading data that is not in the

standard HAL/S format. Integer data that has been punched on cards in the format shown
by the table below could be read in by the HAL/S statements which follow it.

Input Format
Columns Description
1-3 case number
4-5 age
6 I=male, 2=female
7-10 X factor
Example of Input
1152612781
n | ace:
n | rroGRAM:
" DECLARE € CNARACTER(S0);
n DECLARE INTEGER,
" CASE_NM, ABL, SEX. Xi
. .
" READALLIS) €3
! .
" CASE_NUN # INTEGERIC Y
s 173
. .
" AGE ® INTESER(C "
s av0S
. .
" SIX = INTESERIC )}
s [
. .
n X s INTEGIMC "
s ? 1010
M ] CLO8E ast:
. [y - N ST )
N

B
e M sty 1 bkt 5 e dp s o

a e WAL AR RSt
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This would yield the following values:

CASE_NUM = 115
AGE =26
SEX =1

X = 2781

When the argument to the INTEGER shaping function is a character string, all of the
characters must be in the range 0-9 (i.e., comprise a valid integer). Thus, this code would
not work if the CASE_NUM field (for instance) was coded with leading blanks instead of
leading zeros. The TRIM function can be used to make the program more tolerant as in:

CASE_NUM = INTEGER(TRIM(CS(I TO 3))):

The READALL statement used to obtain C from channel § (probably a card reader) will
be fully described in the next section of this chapter.

Since the standard external format for scalars is not always convenient, a character func-
tion like the one below can be used to write a more readable XX.YYY notation:

REFORMAT:
FUNCTICON(X, DECIMALS, WIDTM) CNARACYER(20);
DECLARE X STALAR,
OECIMALS INTEGER.
WIDTH INTEGER;

X IS THE NUM3ER TO BE CONVERTED, NECIMALS IS THE NUMBER OF
DIGITS YO BE PRINTED AFTER THE DECIMAL POINMT, ANO WIOTH IS
THE TOTAL LENSTH CF TME STRING RETURNED

DECLARE Y SCALAR;
DECLARE C CHARACTER(20):
DECLARE S CHARACTER(1);
CECLARE ZEROS CHARACTER(20) CONSTANTICNAR(20) 0');
IF X < 0 THEN
00;
Y ® =X

.
LI
LT
tuse
00
Yexi

*
$s 3
£ND;
. oECINALS
C 3 CHARACTER( INTZGER (10 Y
WOUBLE

»
IF LENSTHIC) < BECIMALS THEN
L] ’
¢+ zeq08 "es
1 7O DECIMALY-LENGTNIC)

» 1] L]
RETURN RJUSTIS || C It lte » WIOTH)S
1 T0 8-DECIMALS 9-DECIMALS-2 TO &

T OIM AIMIM GIMIIMIIIIIMIIIIIII NON ITXIIXX

CLOSE REPORMAT;

. T

-
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With the function before,
WRITE(6) REFORMAT(SQRT(2), 3, 5);
would yield:
‘1.414’; i.e., a five character field with three decimal places.

Two new features are introduced in this example. First, the expression “CHAR(20)0™
is a shorthand notation fcr the string consisting of twenty zeros. It is a character literal
which may also be used in an assignment statement such as:

C = CHAR(80)" *; /*blank card®/.

An additional built-in function. LENGTH. is also used. LENGTH takes a character variable
or expression as an argument and returns an integer representing its current length.

The REFORMAT function shown here has one deficiency: Mt does not check X for
being too large for 8 field of width WIDTH. A good fixup woulo be to retum part of X in
scientific notation if it is too large for the field. This improvement is left as an exercise.

Exerciees

84A Whict of the following expressions are legal character subscripts? Which are legal
vector subscripts? (Assume all variables are of integer type.)

) @)

b) (I+1)

¢y (7 AT Y
d) 2 TO I-2)
e) (6 AT I+))
N 3T0H
s (X TO K-)

8.4B  What will the output be from the following program?

PROG_B: PROGRAM;
DECLARE CH CHARACTER(!S) INITIAL('ABC’);
REPLACE PRINT BY “WRITE(6)™;
PRINT CH, CHIICH;
CH = ‘123’1 iCH | I'456";
PRINT CHS$(1 TO $), CHYS TO »),
CH = CHS(] TO 2)!ICH$(3 AT ¥-$);
PRINT CH, CH(#-2 TO #):
CLOSE PROB_B;

}
|
|
j
|

PO SN
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340 Given the following declarations and assignments, which of the tollowing compan-
sons are true? Asstme that ‘A" <'B'<...<°2".

DECLARE Ci5.CHARACTER(1S)
DECLARE CHARACTER(1)
Ct1, Ci2,

Cls = A",
Clt = A",
Cl2 =B,

Ay A s Cli

M CIS = AT

¢) ClS =11

d) C15 1= C12

e) AT < ClI2

N A" < AR’

) Cli < AP’

hy CIs < Cll CAT (12

8.5 OTHER HAL/S 1/O CONSTRUCTS

The READ and WRITE statements already described allow data to be transterred
between a HAL/S program and a sequential character oriented file. The data is always
transterred in a standard format according to its type, though 1/0 control functions allow
arbitrary positioning of the data. Since character operations allow output reformatting, the
addition of an unformatted rcad (READALL) gives the programmer complete control
over sequential character files.

HAL/S also supports random-access files, which do not necessarily contain charac-
ter data, via the FILE statement, and provides some features which aid in tranlerring data
to and from special purpose sensors and effectors.

LI
A
vy b %
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8.5.1 The READAL: statement
O.ic example of the READALL statement,

DECLARE ¢ CHARACTER(30).
READALL(S) C:

was used in the previous section. Aside from the KEADAL} kevword, the format of this
statement is exactly that of the READ statement, although a restriction is made that all var-
iables be of character type.

The READALL statement can input up to one line of characters from a HAL/S channel;
the characters read are placed dircctly in the character variable or variables without any
special interpretation of the delimiters blank, comma, and semicolon. Characters are trans-
ferred until either all of the variables have been filled to their declared maximum lengths, or
the entire line has been read, whichever comes first. Unless the READALL statement hegins
with 1/O control functions (e.g. SKIP, LINE) the device mechanism is advanced to the be-
ginning of a new line before the first character is transferred.

When a list of variables or a -haracter array is specified, each variable or element is tilled
in tum. There is no automatic movement of the device mechanism between variables. This
allows a line of data to be broken into fields; a card could be read as eight 10<character
ficlds by:

DECLARE CARD ARRAY(8) CHARACTER(10):
READALL(S) CARD;

1/O control functions may also be used with READALL. Using the declaration above,
just the first and last ficlds could be read by:

PEADALL(S) CARDS(1:), COLUMN(71), CARDS(8:),
READALL uses the same set of channels as READ and WRITE. Input and output

should not be mixed on the same channel, but READ and READALL may both be used
on the same inpul file or even the same carJ as in the following example:




820 1/0) and Character Strings

ouT
FRO!

2 O0MNO0 IZIMIMIIIIIIXIZIIZIXITIZTI NONONY IIXIXX IR

INITIALYIZE:
'ROCLOURE;

CLOSE INITIALIZE:

LLLOSE QU ERS

ER:
SRAM:

DECLARE SCALAR,
FHI, ALPNA}
DECLARE IMITIAL_FOSN VECTOR DOUBLE:
DECLARE HODE INTECER,
PRINT BOOLEAN;

DECLARE V NAME CHARACTER(S);

REFLACE INFILE BY “§";

00 WHILE TRUE;
READALL(INCILED VNAME;
VHAME = TRIMIVNAME);
IF VHAME = °*FHI' THEN REAO(INFILE) SKIP(0), COLUMNI®), PHIS
IF VMAME © ‘4LPHA' THEN READ(INFILE) SKIP(O}, COLUMN(9), ALPHA:
IF VNAME x ‘I_FOSN' THEN REACIINFILE) SKIP(O), COLUMN(9), INITIAL_POSN;
IF VNAME 3 'M2JE’ THEN PEADUINFILE) SKIP(O), COLUMNI9), MODE:
IF VNAME = ‘FiINT' THEN K_4D(INFILE) SLIP (0), COLUMN(9), PRINT;
IF VMAME = END' THEN EXTY;

END}

IF PRINT THEN

WRITE(6) PHI, ALPHA, INITIAL_SUIN, HODE;

' The INITIALIZE procedure above could be used to read initial values for a simulation

run. The i

nput lines would consist of a variable name in the first eigh: columns followed by

an initial value in the standard external format for that data 13:pe, e.8.

> Me .

PHI 00137
PRINT v
I_POSN L, 1,1
END

P

This type of initialization module takes little memory and is fairly efficient if there are
not too many variables. Jts main advantage is that it is very easy to code, particularly if a
parameterized REPLACE macro is used to abbreviate the repeated code:

A e e P SN Sy S S
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REPLACE T1STUD, VAR) BY
I VNAME = 1D THEN REAID(H
SKIP(0). COLUMN("), VAR™,

FESTCALPHA', ALPHA),
TESTCL POSN', INITIAL POSNY.

[\ (%

Fxercises

8.5 1A What HAL/S data types may be read usng the RFADALL statement?

R.S 1B How are character stongs sitable formmput via the RFADALL statement Jdifterent
from those suitable tor imput via the READ statement?

8.5 2 The FILF Statement

The PILE statement s used to read and write random aceess tides. These hles (which are
numbered separateiy from canneh) are organized o recoras which may be accessed in

any sequence. Generally speaking, any record may be read or witten in the same smount
of time as any other (hence the term “random decess’ )

The FILF statement has two forms,

FILE(number, address)= expression,
and

vanable = FILF(number, address),

The construct FILFinumber, address) is called a file expression. When the file expression s
used on the lett of the equals sign (the output file statement), the valte of “expression™ is
written to the recond specified by “address™ on the file speafied by “number™ When the
file expression is nsed on the right hand side (the wput tile statement), the record denoted
by the file expression is read into “varable™,

The FILF statement is highly implementationsdependent. the appropriate User's Manual
should be consulted before it is used.

The “number” and “address™ operands of the file expression may be any integer or
scalar anthmetic expression.  “*Number™ must be computable ot compile-time. It the ex-
presston is scalar, 1t will be rounded to the nearest integer. The legitimate ranges of these
integens are implementation dependent.

There are no restrictions on “expression” i the output file statement. All of the fol-
lowing statements are legal:

B L Tl SO EIPPYRRSY

ST
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DECLARE MATRINUIO,10), M1, M2
DECLARE A ARRAY(99) INTFGFR:
DECLARE € CHARACTFR(Q20):
DECLARFE 1 INTFGFR INITIALOD);
REPLACE HIST BY 3%,
FILECHIST, 12y = ML

FILF(S, D) = ML+ M2**T,
FILE(HIST.8) = MIS(2 TO “.*)n
FILF(RISTYY = A+L,

FILEQHIST. I = C (] L

There are, however, some restrictions on “varable™ in the input file statement. These
are the same restricdgons that apply to assign parameters of procedures. **Variable™ must
be one of the following:

I Anunsubscripted vanable.
2. Anenure array el ent.
3,

A congiguons partition of a smgle vector of matnx.

The following mput file statements are all legal:

Ml = FILEQUST. 2
C = FILFQ3)

ASt = FILFHE,
MISULY) = FILEGS. o0

It 18 nos possible to read into a non-contiguous partition ¢f a MATRIX (M1S(*. 1) or an
array partition (ASS TO 10) or a partition of a character string (C$H3 TO ),

Both versions o) the file statement cause the tratster of unformatied binary data. Thus,
it the file statements are 10 be used reliably, @ recond should alwavs be read into a variable
of the same type and orgamization as the evprossion that was written, Since the compiler
canuot know how a file was originally written, it is up to the programmer to ensure
compatability.

8.5.3 Avionics 1O

HAL/S doe: not include any specitic avionics /O statements, principally due to the fact
that there is currently no standandizaiion of airbome 1/0 systems. Some flight computers
have one or more ‘ndependent 170 p vcessors or channels with their own unique instruction
sets. Other compute either have CPL instructions for 1/0 or have a section of memory
that is “hand wired™ to exteniy! otives te.g. storing into tocation S432 Joctal] might lower
the landing gear),

Operating systems also vary widely in this regand. In some systems !, O is requested by
application programs. while in others it is all done “automatically™ on a periodic basis.
Finally, every system will have a different complement of sensors, displays, effectors, etc.,
each of which may have its own unique formatting and protocel requirements.
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Although there is presently no way to implement generalized avionics 1/O as a HAL/S
statement, the language does provide a number of features that allow individual systems to
be tailored:

Structure (Chapter 9) and compool (Chapter 11) templates allow a section of
memory to be mapped into a collection of variables of assorted types.

Procedures and functions can be coded in assembly language and interfaced to a
HAL/S-program (see Chapter 11).

Bit strings (Chapter 13) allow low-level formatting via subscripting and logical
operators (AND, NOT, etc.).

1/0 errors may be handled via the ON ERROR statement described in Chapter 10.

Event variables (Chapter 12) allows waiting for 1/O completion, and may trigger
transactions when signalled.

Fach implementation defines a set of %macros which allow pre-defined machine

instruction sequences to be omitted.

The following code illustrates some of the ways that 1/0O might be performed in alter-

nate systems:

ASSCRTEDIO:

FA03%2 1

REFLACE GEARDCLM BY “INTEGER(CCT'S5432')";
DICL2SZ DO_NAV_READ EVINT;
MEM PANE ASRAY(32767) BITI16) INITIAL(NAME(NULL))S
TUIE ICTATM:
ICE INTEGIR.
TUS 3IT(1%),
EUTFER MiLZ ATRAY(10) INTEGER,
1 KIT3§ 14TERIPG
OECLARE F!2$INSIOS IOPAPM-STRUCTURE INITIAL(16, HEX'0', NULL,
DICLASE IO FRCCEDULRE NCUHAL(Y)S
PCOLLCE CTSYS BY 13
T2 €ass COFS/S;
Z9VCL9);

s
DEy
T

18

.
CALL IO(FRDSENSIRS);

MM = ON3
GEARDCRN:

SIGNAL DO_NAV_READ;

H
p2H

CLOSE ASSC” TEDIO;

Y2 H

/#PERCENT MACROw/

/HASSEMBLY LANGUAGE®/

/#EVENT VARIABLE/
/ANJ-0Pw/

This program only indicates a few alternatives; there are many other possibilities.

- - NI aeny ey
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8A

8B

8C

End Of Chapter Problems

Write a HAL/S program that will read, from channel 5, 2 arrays of character strings
(5 ¢lements per array, maximum 5 characters per string), remove leading and trailing

blanks from each string, reverse each string, and write the results on channel 6 in the
form:

Column § Column 1§

CHAR_ARRI,.
CHAR_ARRI ;.

CHAR_ARR?,
CHAR_ARR2,.

CHAR_ARRI4. CHAR_ARR2s.

Write a HAL/S program to perform the following task:

Input on channel 5 contains the names of 50 people, each consisting of a first name,
one blank, and a last name. Names are separated by commas, the maximum length
of any name is 25 characters, and there are no blanks in the input except those fol-
lowing the last comma in a line (no name is broken across two lines). The final
name is not followed by a comma.

The program should read in all S0 names into an array, and write on chanrel 6 all
names whose last name begins with °S’,

An example of possible program input is:

SAMUEL COLERIDGE.CHARLES BAVOELAIRE,EMMY NOETHER,
WILLIAM SHAKESPEARE,TYCHO BRAHE,DAVID HILBERY, etc.

Use the INDEX built-in function described in Appendix A.

Write 2 HAL/S program that will read from channel § a |- to 3- digit integer, and
write or: channel 6 the English equivalent, e.g.,

173 -» ONE HUNDRED SEVENTY-THREE
0 -+ ZERO
15 -+ FIFTEEN etc.

vl 3 C
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Declaring and Referencing Structures  9-1

9.0 STRUCTURES

HAL/S structures provide a means of collecting a group of vanables under a single name
This grouping capability has & number of uses, one of which is illustrated below. Suppose a
utility function which requires many parameters is defined at the outer level of a program
and invoked from lower level code as shown below:

OQUTER:

PROGRAM;

DECLARE SCALAR,
Gl. G2;

UTIL!

FUNCTION(A, B, C, D, E) VECTOR:
DECLARE A VECTOR:
DECLARE SCaLAR,

8, 0
DECLARE C INTEGER,
€ BOOLEAN:

000 IIIXTXIXIITAZTIT

RETURN AS
CLOSE UTIL;
NESTED:
PRCCEOURE:

A FROCEDURE WHICH INVORES UTIL

OECLARE RESULY VECTOR:
DECLARE V VECTOR INITIAL(O, 1. 0);
DECLARE SCALAR,
S1. 828
DECLARE C INTEGER INITIAL(B3),
€ BOOLEAN INIVIALIOFF);

.

sl=26) "’y
ST = SINIGL »+ 6€2);

RESULT = UTIL(V. 81, C» 82, E)}

CLOSE NESTED:

" X 000 ZXImXIX O0O0N IXIXZIIIT O LXIIXm

It is advantageous to keep the actual arguments passed to UTIL (ie. V, ST, 82, ete))
declared at the lowest possible level because of the protection afforded by scop® 2 rules, and
to show that these variables “belong™ with the NESTED code block. On the other hand,
some inefficiency results from passing all five parameters separately. The code in the next
figure shows how structures can be used to reduce the number of UTIL parameters to one.

P I R
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OUTER:
FROGRAMS
DECLARE SCALAR,
Gl. 623
STPUCTLRE UTIL_PARM:
1 V VECTOR,
1 81 SCALAR,
1 C INTEGER,
1 S0 SCAlaR,
1 £ BOJLEAN;
urtIL:
FUNCTION(X) VECTOR}
ODECLARE X UTIL_FARM-STRUCTURE:

.

RETURN X.v;
CLOSE UTIL:
NESTLD:
PROCEIDURE;
DECLARE RESULT VECTOR:
DECLARE LOCAL UTIL PARM-STRUCTURE INITIALIOs 3. 0, 0. 83: 0, OFF):

NOTE THAT THE TEMPLATC IS NOTY REPEATED

LOCAL.S1 = G) 7 3}
LOCAL.S2 & SIN(GY ¢ 6);

.

.

- .
RESULT = UTIL(LOCAL);

X2 OoON Im ONO XX O IJFLXIJIIM OO0ON XTIXIZXIIZIZIILIIIIIX

CLOSE NESTEOD;

.

Xz Nnoe

CLOSE OUTER:

Several new language constructs are used in this example. First is the statement begin-
ning with “STRUCTURE UTIL_PARM:™. This statement creates a structure template
named UTIL _PARM which defines the layout of the UTIL. PARM-STRUCTURES declared
I-*or. In addition to structure declaration and initialization, the example shows references

the components of a structure, structare terminals, such as “LOCAL.S1™ and an entire
st.acture, LOCAL.

The next section describes all of the constructs used in the example, although some of
the more complex forms are deferred to the end of the chapter.
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9.1 DECLARING AND REFERENCING STRUCTURES

In the statement:
DECLARE LOCAL UTIL PARM-STRUCTURE INITIAL(0.!,0.0.83.0.0FF);

the phrase “UTIL PARM-STRUCTURE" takes the position usually occupied by a data
type. This is actually consistent syntax because X-STRUCTURE, where X is a template
name, is a data type. Hence, a template name with the word STRUCTURE attached by a
hyphen can be used in most of the constructs from previous chapters which require a data
type or “type specification”. Fxamples include factored declare statements such as:

DECLARE UTIL_PARM-STRUCTURE,
LOCAL,
X.
Y INITIAL(1,2,3.4,5.6,TRUE),
ZERO CONSTANT(0.0,0,0,0,0.0FF);

and function type specification, as in:
SHAPE: FUNCTION(A,B.C.D) UTIL _PARM-STRUCTURE;

It is important to note that STRUCTURE by itself is not a data type: The type of a
structure is entirely defined by the layout of its template. From this rule, and the descrip-
tion of parameter passage in Chapter Seven it follows that when a structure is passed to a
procedure or function, the template of the actual argument passed must be identical to the
template of the formal parameter.

The cond:ions under which two templates are identical for purposes of data type
matching (ir: parameter passage, assignments, etc.) will be discussed in Section 9.2, However,
the easiest way of assuring that two structures are of the same data type is to use the sane
template in their declarations. In the example, the STRUCTURE statement which defines
the UTIL_PARM template is part of the program level declare group. It can be used in the
declaratiors »f X and LOCAL in nested routines because the scoping rules for structure tem-
plates are the same as for declared variables. Thus, a template defined at the program level is
global and may be used in declarations anywhere in the program.

In addition to parameter passage, entire structures may be used in assignment statements
and in the various 1/O statements. For example, a set of ten test cases could be run through
the UTIL function by executing the following code:

T 8 s e o AT
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N0 IIXIXTXIXIXIIZTITIITX

XTI XTOINITIImM

QUTFR:
FROZ5AM;
ODECLARE SCALAR,
61, 62:
STRUCTURE UTIL PAPM:
1 v VECTOR,
1 81 ccawrm,
1 € INTEGEQ,
1 S SCAlaR,
1 E BCOLEANG
DICLARE ARG UTIL_PAPM-STRUCTURE;
UTIL:
FUNITIONIX) VECTCR;
OECLARE X UTIL_PAPM-STRUCTURE;

RETURN Y,v;
CLOSE VUTIL:
DO FOR TEMPOQARY I z 1 TO 10;

*
READ(S) ARG;

3 .
NRITE(S) "UTIL OF', ARG, 'z', UTILIARG):

|10
CLOSE CUTER;

The statement “"RFAD(S) ARG s functionally equivalent to-
READ(S) ARG.Y, ARG.S1, ARG.C, ARG.S2, ARGLF;
In other words, the components ot the structure are read in the “natural sequence™, which

is the order in which they appear in the structure template, The components are output in
this same sequence when ARG appears in a WRITF statement.

[
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The Structure Template 9-S

Similarly, given:

DECLARE UTIL_PARM-STRUCTURE, A, B;
the statement:

A =B
is equivalent to the sequence:

AV = BV;
AS1 = BSI;
AC = BC;
A.S2 = B.S2;
AE = BE;

Structure components, such as LOCAL.V and A.S1, follow exactly the same rules as
simple variables of the corresponding data type. No restrictions whatsoever are imposed on a
structure component that would not also apply to a simple variable of that type. Thus, the
vector component, V, of a UTIL_PARM-STRUCTURE, A, can ve subscripted,

A.VS1 = AVS2,
used in a comparison,

DO UNTIL A.VS(2 AT 1) = 0,
passed to a built-in function,

A.S] = ABVAL(A'V);

read, written, or filed, or used in any other construct in which a vector is allowed. Further-
more, there is no additional runtime overhead (either time or space) involved in referencing
a component of a structure rather than a simple variable.

Structure initialization is essentially the samc as array initialization: the initial list con-
sists of a value or set of values for each component of the structure, separated by commas.
The CONSTANT attribute is also acceptable. There is no way to write a structure /iteral, but
the CONSTANT attribute may be used to obtain the same effect. For example, a convenient
way of setting all of the components of a structure to zero is:

DECLARE UTIL_PARMS-STRUCTURE,
A,
B,
ZERO CONSTANT(0.0,0,0,0,0,0FF);
A = ZERO;

' redi

[ R P Ty



9-6 Structures

In addition to assignment statements, parameter passage, and 1/0 statements, sompan-
son of entire structures is permitted. As was the case with arrays, the only comparisons that
van be made between structure operands are equal (=) and not equal (7=).

In this section we have discussed all of the ways that entire structures can be used in
executable statements and made the assertion that components of a structure may be used
in any way that simple variables of the same types can be used. We have discussed declara-
tion and mitiahization of structures using the template names as a data type. All of the ex-
amples have used the same template (UTIL _PARM), but the rules for creating templates
have been omitted and the naming of structure components has only been implied by evam-
ple. In Section 9.2 we will clear up these points and show additional examples of the use of
structures. This chapter concludes with the presentation of two additional attnibutes: “Copi-
ness”, which is analogous to arrz ness of other data types, and unqualitied structures, which
are easier to reference but more linnted in capability.

9.2 THE STRUCTURE TEMPLATE

A structure template describes the layout of a structure ia terms of the onder and data
types of its components. A structure template is created via the STRUCTURE statement.
This statement begins with the word STRUCTURE followed by the name of the template
being detined and a color. The remainder of the statement 1s a list of component descrip-
tions scpatated by commas. Each component is described by a level number, a name, and a
data type. The statement below creates a template named SUPER VECTOR which has
three components

STRUCTURF SUPER VECTOR:
1 V VECTOR,
I STATUS BOOLEAN,
1 TIMFTAG SCALAR,

The phrase "1 V VFCTOR' defines a component named V of type VECTOR at level one,
These level numbers require some explanation, but first we will stath the rules about names
and data types.

I' The name of a structure component may be any valid HAL/S identifier.

2} The names of etructure components need not be unique, provided they can be un-
ambiguously referenced (i.e. structures A and B may both have a component named
X since they can be distinguished by referencing A.X and B X).

3) The components of a structure may be of any data type. They may be of single or
double precision and they may be arrayed.

Siace SUPER _VECTOR-STRUCTURE is a data type by the definition in this chapter,
rule three above makes the following template legal:

STRUCTURE STATEVEC:
I POSITION SUPER_VECTOR-STRUCTURE,
| VELOCITY SUPER_VECTOR-STRUCTURE,
1 ACCEL SUPER VECTOR-STRUCTURE;
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Given the follov/ing structure dcclaration:
DECLARE STATE STATEVEC-STRUCTURE;

how are the low-level components referenced? The answer follows from the information al-
ready presented: Since the V component of POSITION is named “POSITION.V", the POSI-
TION.V component of STATE may be reterenced as “STATE.POSITION.V". This process
may be carried to any level. Given,

STRUCTURE S2:

I STATE STATEVEC-STKUCTURE,

1 ATTITUDE _INFO ARRAY(3) VECTOR DOUBLE:;
DFCLARE STATE2 S. STRUCTURE,

the components are named:

STATE2.STATE.POSITION.V.
STATE2.STATE.POSITION.STATUS,

STATE2.STATE.ACCEL TIMETAG,
STATE2.ATTITUDE.INFOS(1:),

and so forth. The components listed above are called strurture terminals, A structure termi-
nal is any component of a structure which itself is not a structure. Structure components
which are also structures are termed structure nodes; this terminolcgy stems from viewing a
structure as an inverted tree, as shown below:

ATTITUOE_INFO
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In this diagram, rounded boxes are used to represent nodes, or torks in the tree. The

square boxes represent structure terminals which ate the leaves of the tree.

In Section 9.1 it was stated that a component of a structure may be used in any context
in which a simple variable of the same typ: can be used. This statement applies to both
structure terminals ard to entire nodes of a structure. Since the nodes STATE2.STATE PO-
SITION and STATE2.STATE.ACCEL are of type SUPER VECTOR-STRUCTURE., they
may be rcad, written, filed, assigned to cach other, compared, or passed as rarameters to a
procedure ot function which expects a SUPER _VECTOR-STRUCTURE 4s an argument.

Thus, these components of STATE2.STATE might be manipulated as shown below:

”
FROSNANG
STOUCTUNE SUPER_VECTOR:
1 v vicien,
1 STATUS POOLEAN,
1 TIMETA3 SCaLaR;
STRUCTUST STATEVEC:
1 POIRTION SUFIR_VECTOR-STRUCTURE .,
1 VELOCITY SUPER_VECTOR-STRUCTUNE,
1 ACCEL SUSER_wiCTOR-STRUCTUNE
DECLAPE STATL STATEVIC-STRUCTURE;
steUcTLNE 320
1 STATE STATEVIC-STRUCTURE,
1 ATTITUDE_INFO ARPAYIS) VECTOR DOUSLE;
OLCL/PE STATEY S2-STRUCTLOL;
RIPL.CE TEST _DATA By 1]
BECLIRE CYCLE INTEGEN INITIALIO):

. .
STAVEZ.STATE. ACCEL 3 READ_ACCILT):

" IAJIIJAIIXIIIIIIZITIIIIII

ASIUNE JVAT 17 SELLCTS THE CORPECT ACCELEROMETEN

. .
CALL INTAGRATE. QTATRZ . STATE.ACCEL) ASSION( STATEZ . STATE.VILOCTIY);
.

.
CALL INTRIWATE(STAYEZ. 2TATE.VELOCITY) ASSIGNISTATER STATE. PrSTTION);
CYCLE = CrCLE ¢ );

INTE"PATE.
PRCCEOUNLL INPUT) ASSISHIOUTIUT )
OECLARE SUPEP_VICTOR-STRUCTLNE,
eut, outeuT;

17 INPUT.STATUS 5 PaLSE THEN

UTAUT. STATUS + FaLsts
RETUNN;

(N0
QUTFUT. TINETAS = INPUT.TINLTAS:
CIPUT.V 3 QUTRNT.Y ¢ IW.; BELTA_Y;

CLOL INTRGMATE
tL93L P

IIZI=JTEIZXIAZIIAIZIIZIIARNIIMIM

OECIARE OELTA_Y COMNSTANTIL / 10)} /OTING PATWEZH SAMPLESS,

.
FILECTAZT OATA, CYLLEY ¥ $TATRZ.2VATE: /93AVE FOR POST PROCESSINGS/
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An altemate way of coding the S2 template used in declaring STATE2 appears in the
following figure. This example should make the use of level numbers clesr: level numbers
provide the capability of creating nodes in a template without referencing other iemplates.
No change whatsoever would be required to the previous program ' this S2 template was
substituted for the earlier formulation.

LiN
PROGEAM;
STRUCTURE SUSTR_VECTOR:
3 v vicvom,
1 STATUS BOOLEAN,
1 TINETG SCALAR;
STRUCTUZR 923
1 sTATE,
2 POSITION,
3 v vicTOR,
3 STATUS SOOLEAN,
3 YINETAS SCALAR,
2 vILOCITY,
3 V VECTOR,
3 STATUS POOLEAN,
3 TINETAG SCALAR,
2 ACCEL SUPER_VICTOR-STRUC U,
1 ATTIT'OR_INFO ARWAYLY) VECTOR DOUBLE!
CLOSL P,

oot

IIXIZTTIZIXIZTAIIIIZIIXI

By referring back to the tree diagram of the STATE2 structure, it can be seen thai the
level numbers represent the distances between the top of the structure and each component.
Another illustration of this correspondence appears below:

STRUCTURE X: Level
I A,
2 B INTEGER, !
2C, T TN T T T
3 D INTEGER, TS
3 E INTEGER, ——
| F INTEGER; 3
’ ’ In these examples, the structure (emplates have been indented to show the contents of
A each node. This indenting is supplied by the compiler based on the level numbers. Since the

HAL/S language is written in free format, the number of blanks coded on source cards i
irrelevant. Hence, the previous example could also be written as:

STRUCTURE X:i A, 2 B INTEGER, 2
C, 3 D INTEGER, 3 E INTEGER, | F INTEGER;

and ihe same output listing would result.

aF

R RGN
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Coding structure templates in the above torm is not recommended, however. Properly in-
dented source code generally makes desk checking and subsecuent modification much
casier

Exercises

9 2A  Wnte structurs templates for the following trees.
Y
Al Bl Al B2 C2
/

(‘1/ DI Ei 'l D2 E2
where.
ClL. Pl are 3-vectors;
D2, F1 are 3x3 matrices,
D2, F2are arrays of length § of 3-vectors,

All other termunals are scalar

9.28

a) For the folluwing sequence of structure templates and the single declaration below,
draw the tree tor the declared structure TEST DATA

STRUCTURE X.
1 A INTEGER,
1 B,
2 VI VECTOR,
2 V2 VECTOR;
STRUCTURF Y:
1A,
2 B INTEGER,
2 V1 VECTOR,
1 C SCALAR:
STRUCTURE DATA:
I W
2 M X-STRUCTURE,
2 N Y-STRUCTURE,
11,
2 1 X-STRUCTURE,
2 K Y-STRUCTURE;
DECLARE TEST_DATA DATA-STRUCTUREF;

e A e e e
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The Structure Template 9-11

Write, in the natural sequence, the expressions used to reference each terminal of
TEST DATA.

Write an alternate structure template for DATA that allows the t2rminals to be ref-
erenced exactly as in part (b), but does not use structures X and Y.

Call the structure template of part (c) DATA_PRIME. and make the following
declarations:

DECLARE STRUC! DATA-STRUCTURE,
STRUC2 DATA_PRIME-STRUCTURE;

Which of these assignments are legal:

1) STRUCLLLM.A = STRUC2.LM.A;
2) STRUCI = STRUC2;

3) STRUCLIK = STRUC2.1K:

4) STRUCI.LM = STRUC2.LJ:

5) STRUC2.L = STRUC.IL:

Rewrite the following segment of HAL/S code, using structures to elimin.te the DO
FOR loop. How must the procedure PROCESS be changed to allow this? Be sure the
data can be read in the same order as before.

DECLARE VEC_ARR ARRAY(S) VECTOR;
DECLARE TIM_ARR ARRAY(5) SCALAK;
DO FOR1 =1 TO §;

READ(5) VEC_ARRS(L:),TIM_ARRSI;
END;
CALL PROCESS(VEC_ARR,TIM_ARR);

9.2.1 Template Matching

Throughout this chapter, the data type of a structure has been named by referring to the
template used in its declaration. The statement has been made that two structures are of the
same data type if their templates are identical. For the purpose of matching data types, two
structure templates are identical if and only if the order and data types of all of their com-
ponents are exactly the same. For structure terminals, all of the attributes including preci-
sion and arrayness must match. The term “‘components’ used above also includes structure
nodes; two nodes are of the same type if and only if their ~omponents ire of the same data
types and in the same order.
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This rule can be stated in two different ways:

1) Two structure templates are identical it and only f the order, data types, and
Inerarchical arrangement of their terminals are the same,

2 Two structure templates are wentical if the only differences between them are the
names of termunals and nodes.

Most of the information about structures has alrcady been presented. We have seen how
to declare and reference structures and their components. and how to code structure tem-
plates. The use of structures to group data for parameter passage. assignment as a Flock, and
the simplification of /O statements has been illustrated. Subsequent sections will add a few
more capabilities to structure declaration and referencing by building on the basic concepts
of templates. nodes, terminals, and user-defined data types presented here.

9.3 MULTI-COPIED STRUCTURES

Multi-copicd structures provide a capability similar to arrays of simpler data-types. The
uses of structure copiness are much the same as the uses of arrayness described in Chapter
Six. i several structures are to be processed identically, it is convenient to reference them
by number within a loop. An example of this usage is described below,

I'he SUPFR VECTOR template from Section 9.1 (repeated below) might be used to
contain sensed velocity data from an inertial measurement untt. Since these devices are
usually redundant, st is useful to define a multi-copied SUPER  VECTOR to contain the
Jdata. The following figure shows how such an entity can be declared and referenced.

ENAMFLE_N:
FROGRAN:
STFUCTURE SUPER_VECTOR:
1V vicTom,
1 STATUS ENOLEAN,
1 TIMETAG SCALAR;
DECLEP. VEL SUPCR_VECTOR-STRUCTURE(3);
DECLAFE EEST INTEGER:
DO FOR TEMFORARY I = 1 TO 3;

.
CALL READ_IMUCI) ASSIGNIVEL )}

WBIM UIMIMI AWIMIIIIIIIXZ

1
END;
.
CALL SELECT_PESTI{VEL)) ASSIGNIBEST);
.
CALL GUIDANCE(VEL IH
BEST;
*
CALL OTHER_SK(VEL I
BEST:
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Multi-Copied Structures  9-13

SELECT_BEST:
PROCEOURE(V) ASSIGN(SELECTED);

DECLARE V SUPER_VECTOR-STRUCTURE(3),
SELECTID IMTEGER;
DECLARE N INTECSR:
DECLARE MOST_RECENT SCALAR INITIAL(O) AUTOMATIC;
DO FCA N = 1 70 3;

IF V.STATUS = OFF THEN
Ni

REPEAT;
IF V.TIKETAG > MOST_RECENT THEN
N

’

00;
SELECTED = Nj
MOST_RECENT = V.TIMETAG

N;

END;
END;
IF MOST_PECENT = 0 THEN
SELECTED = 13

CLOSE SELECT_BEST;
GUIDANCE:
FRCCECURCIBEST_VEL);

DECLARE BEST_VEL SUPER_VECTOR-STRUCTURE;

/¥ALL EQUALLY BAD®/

CLOSE GUIDANCE:
OTHER_ S+
FRCCEDLRE(V);
DECLARE V SUPEP_VECTOR-STRUCTURE;

CLOSE OTHER_SW;
READ_1HU:
PROCEDURE(UNIT PMUM) ASSIGN(STRUC);
DECLARE UMIT_WUM INTEGER,
STAUC SUPER_VECTOR-STRUCTURE:

CLOSE READ_IMU;
CLOSE EXAMPLE_N;
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Several points are illustrated by this example. First, a multi-copied structure is created
simply by appending a copiness specifier to the structure declaration. The copiness specifier
is a parenthesized integer which immediately follows the word STRUCTURE. As with
VECTOR ur ARRAY dimensions, the number of copics may be specified by any arithmetic
expression which can be computed at compiie time*.

The next new construct in the example appears in the statement:

CALL READ IMU(I) ASSIGN(VELS(I)),

This statement is intended to obtain the Ith copy of [VEL] frcm an external device.
VELS$(l:) is a SUPER_VECTOR-STRUCTURE with no copiness; the fact that it is con-
tained in a multi-copied structure does not by itself impose any restrictions on its use. The
semicolon in the subscript separates structure subscripts from the other types of subscripts
for the same reason that the colon is used to set off array from component subscripts. Struc-
ture subscripts may of course be combined with the other types: for instance, the second

component of V within the third copy of VEL can be referenced as VEL.V$(3:2). Some of
the many combinations are illustrated below. Given,

STRUCTURE X:
1 M ARRAY(10) MATRIX,
1 1 ARRAY(3.2) INTEGER;
DECLARE BIG X-STRUCTURE(100):
the very first scalar component is:
BIG.MS$(1:1:1.1)
and the last scalar is:
BIG.M$(100;10:3.3).
The first four integers are:
BIG.I$(1:1 TO 2.*),
which is a two-by-two integer array.
BIGMS$(1:*:1,%)

is an array of ten 3-vectors composed of the first rows of all the matrices in the first copy of
BIG.

*There is also an equivalent to ARRAY(*) which will be described later.

Sy S R e
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Partstions are also atllowed in structure subscripts, the statement:
BIGS (1 TO 50) = BIGS(S1 TO #)).
would set the first fifty copies of BIG to the values contained in the last fifty.

The data type of BIGS(1 TO 50.) is “multi-copied X-structure”. When the structure sub-
senipt is applied to a rerminal (¢.g. BIG.1), the result 1s no longer a structure. 1 this case, the
copiness 1s converted to arrayness. BIG.MS$(1 TO 50.) behaves like a SU x 10 array of matri-
ves. Likewise, BIG.IS(1 TO 50:1.1) behaves like an ARRAY(50) INTEGER even though all
of the actual arrayness was subscripted away. With respect to terminals (but not nodes),
arrayness and copiness are interchangeable.

Returning to the onginal example in which VEL was declared as a threecopied
SUPER _VECTOR structure, we can see how the conversion to arrayness is used. T.c fol-
lowing are arrayed statements which function exactly as described in Section 6.2.

[VFL STATUS] = ON; /*set all three status booleans to TRUE*/
MOST RFCENT = MAX([VEL.TIMETAG] M

AVG Z COMPONENT = SUM(VEL.VS(*.3))/3:

AVG_Y COMPONENT = SUM(VEL.VS$(*:2))/3;

VELV = VECTOR(1.1.1),

In many ways, multi-copied structures are like arrays of other data types. We have al
ready seen that subscripting is essentially the samme except for the use of a semicolon instead
of a colon, and that terminals of multi-copied structures can participate in arrayed state-
ments. One copy of a multi<opied structure may be used in any context where a simple
variable of the same structure type can be used: this rule is also the same as stated previ-
ously for arrays and their elements This section has also shown that the uses of copiness are
roughly the same as the uses of arrayness: identical operatioas on similar data, saving a set
of structures in a list, and maintaining tables.

Another way in which multi-copied structures resemble arrays is in initialization. A
multi-copicd structure can be initialized by hsting the initial values for each copy separated
by commas, as showi:

STRUCTUREF MONTH:
1 NAMEO¥ CHARACTER(S),
I DAYS INTEGER,
I COLD BOOLEAN;
DECLARE YEAR MONTH-STRUCTURE(12) INITIALCJAN', 31, TRUE, ‘FEB",
28, TRUE, ‘MARCH', 31, TRUE, ‘APRIL', 30, FALSE, *);

Here, the asterisk (*) is used to indicate that only part of the structure is to be initialized.
The initial values of copies five through twelve are indeterminate. The use of a multi-copied
structure for this type of diverse table instead of a sct of parallel arrays (shown below) is
largely a matter of style. The referencing of entries 1s about equally convenicen?, but the
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initial list groups all of the information about each entry in the case of a structure whereas
the information for arrays must be grouped by type as shown in the alternative below-

DECLARE NAMEOF ARRAY(12) CHARACTER(S) INITIAL(CJAN', ‘FEB’,
‘MARCH', "APRIL’, *)

DECLARE DAYS ARRAY(12) INTEGER INITIAL(31, 28, 31. 30, *)

DECLARE COLD ARRAY(1l) BOOLEAN CONSTANT(TRUE, TRUE, TRUF,
PAUSE. *).

Finally, procedures may be written to accept a structun with a variable number of
copies. The syntax is the same as for arrays, as shown below, which is a re-work of the
example before.

n | exarpLE N:

t | raczRAM;

H STPUCTURE SUPER_VECTOR:

M 1 v VECTCP,

H 1 STATUS EQCLEAN,

M 1 TIMETAG SCALSP;

M DECLAPE VEL SUFER_VECTOR-STRUCTURE(3):
] DECLAFE BIST IMIEGER:

M DO FCR TEHMFOPARY 1 = 1 TO 3;

£ .

L] CALL READ_IMUCI) ASSIGNIVEL )i
k] I

" EHD;

[3 +

M CALL SELECT_BEST({VEL}) ASSIGNIBEST);
H .

H CALL GUIDANCELVEL ]

S BEST:

E +

M CALL OTHER_SHIVEL ¥

s BEST;

M | SELECT_REST:

# | PROCEDUREIV) ASSIGNISFLECTED);

] DECLARPE V SUPER_VECTOR-STRUCTURE(#);
M DECLARE SELECTED INTEGIR;

3 .

M 00 FCR TENFCPARY M = 1 TO SI2E((V});
E .

L IF V.RTATUS = OFF THEN

S i

" PEPEAT;

[ e

L} END;

M ] CLOSE SELECT_BEST;

M ] GUIDANCE:

M ] PPOCECUPLIBEST_VELY;

L] DECLARE BEST_VEL SUPER_VECTOR-STRUCTURE;

'!
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c .
M | CLOSE GUINANCE:

M | OTHER_Sa:

M | FreceorREive;

“ DECLAFE V SUPER_VECTOR-STRPUCTUSL;

¢ .
M | CLCSE OTHEP_SW;

H | REan_1tye

M PROCECUSTILMIT ART) ASSITHISTRUC):

" DICLARE LM:IT_NUM INTEGIR,

" STRUC SUFER_\ECTOR-STRUCTURE

¢ .

M | CLOSE FEaD_Ir;

M | CLCSE ENAMTLE NS

Note, however, that there are a few ways i which multicopied structures are ditterent
from arrays.

1) Only one dimension of structure copiness is allowed.
23 Arravs may be used as structure components, but multi-copied structures may not

3 There are no operators or butlt-in functions for processing structures,

Exercises
9.3A  Rewnte the solution of problem 9.2C using multi-copred structures
938 Conmder the tollowing structure template and declaration®

STRUCTURE Al
I B ARRAY(S) INTFGER,
1 ¢ SCALAR,
1 D VECTOR),
DFCLARE A ALSTRUCTURE(100Y,

Write a HAL/S expression to reference the tollowing data items, and indiwcate their type and
ATTAY NESS/copiness.

a) The 25th copy of A,

b)Y The Ind component of B trom all copies of A.

¢} C from the 10th through 20th copies of A,

d) D from 75th to 85th copies of A,

¢} The Ist element of D from the first copy of A,

-~ e o AL A s
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9,3C  The following information about a company’s 100 employees is available:

a) SS number (integer)
b) salary (scalar)
¢) job code (integer)
d) name (character)

Write a HAL/S program to read in all the data from channel 5 and compute the average
salary. Create a structure to hold all of the available information.

9.4 DENSE. RIGID, AND “UNQUALIFIED"

DENSE and RIGID are minor attributes that can be applied to structures and their
nodes to give the user more control over the layout of structure data in storage. The term
*“‘unqualified” refers to a type of structure in which it is not necessary to qualify each refer-
ence to a terminal by the name of the containing structure. These features may not be fre-
quently used. but they do provide additional capabilities required by some applications.

9.4.1 The DENSE Attribute

The DENSE attribute instructs the compiler to pack portionsof a structure into as little
storage as possible, generally at the expense of efficient references to the data. The DENSE
attribute is specified on a structure template or a node of a template as shown in the figure
below:

P:
PROGRAM;
STRUCTURE FLAGS DENSE:
1 Bl BOOtEAN,
1 B2 BOOLEAN,
1 NIDE INTEGER,
1 B3 BCOLEAN,
1 C CHAPACTER(S);
DECLAPE STATUS FLAGS-STRUCTURE INITIALIOFF, OFF, 0, OFF, *');
CLOSE P;

TTIIXIXXXXIX
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The effect of the DENSE attnibute is implementation dependent. This 1s because the
mapping of HAL/S data types into bits, bytes, words, double words, etc.. varies according to
the storage formats of individual target machines Most computers have operand ahgnment
requirements, for istance requiring that floating point numbers be stored at an address
which is & multiple ot two or four. The HAL/S programmer is normally isolated from these
comsiderations. Since vanables are only referenced by their symbole names, the compiler s
free to re-arrange declared data to meet the requirements of the machine.

Unless the DENSE attnibute is specificed, all datais ALIGNED (e, placed on appropriate
storage boundarnies). DENSE data is packed whenever there is a reasonably etficient means
of bypassing the computer’s operand alignment requirements. Thus, the only seneral state-
ment that can be made about DENSE structures is that they rend to require less storage but
more time to aceess than ALIGNFD structures,

It turns out, though, that most compilers will pack booleans and bit strings in DENSE
structures. In the example above, B, B2 and B3 would occupy the same amount of storage
that would be allocated to i single ALIGNED boolean. Note that B3 is placed in the same
byte, word or other addressable unit as B1 and B2 even though an integer is between them
in the template. Whether or not DENSE is specified, the compiler is free to rearrange the
order of structure components to minimize the number of alignment gaps or to optimize
the addressing of certain components. In fact, all declared data is subject to the rearrange-
ment unless the RIGID attribute is specified (see Section 9.4.2).

Components of a DENSFE structure are referenced in the usual way; some additional re-
staictions on their use apply, but where they are allowed, they bohave exactly like compo-
nents of a corresponding ALIGNED structure. Thus, statements like

STATUS.B1 = ON:
STATUS.B2, ¢ ATUS.B3 = FALSE;
IF STATUS.B1 AND STATUS.BY THEN STATUS MODE = 9;

work as described previously. The additional restrictions® imposed on terminals of dense
structures are.

L
1) Bit or boolean terminals of a dense structure may not be passed as ASSIGN param-
eters to procedures.
2) Bit or boolean terminals of dense structures may not be used on the left hand side of
a FILE statement.

) Bit or boolean terminals of dense structures may not be used in NAME expressions.
See Chapter 13,

*These restrictions avoid the need to pass both an address un/ starting bit number to Library or USER.
supplied routines.

B
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These at. the only restrictions impused on the DENSE attribute; note that they apply
only o bit and boolean types and do not apply to entire structures with the JENSE attri-
bute een if these structures contain bit or boolean terminals. Thus,

[STATUS) = FILE(!,1);

i< legal, but
STATUS.BI = FILE(],1).

is not legal.

9.4.2 The RIGID Attribute
Consider the following structure:

STRUCTURE INTEGER_LIST:
1 St INTEGER,
I D1 INTEGER DOUBLE,
1 S2 INTEGER,
1 D2 INTEGER DOUBLE;
DEC LARE I0TA INTEGER _LIST-STRUCTURE;

On a computer which requires that double precision integers be stored on even ad-
dresses, the compiler would probably rearrange the data as follows:

word: (l) DI
2
3 D2
4 81
) $2

If the data was kept in the natural sequence, the following would be needed:

- word: O [ s1 ]
. \
‘ 2
3 | >
4 ['s2
s
6
3 | o2

The shaded arcas indicate alignment gaps which are effectively wasted storage. These dia-
. grams show how allowing the compiler to re-arrange data can result in 4 substantial savings
. ; of memory.

T R
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Occasinnally, however, it is necessary to prevent this rearrangement, gencrally to inter-
face with external devices or NONHAL mutines. The RIGID attribute is supplied for this
purpose. The second diagram shows the storage assignments that would be made if the
word RIGID appeared immediately before the colon of the STRUCTURE statement. An
appropriate use of the RIGID attnbute appears below:

STRUCTURE iMU_DATA RIGID:
| DELTA V ARRAY(3) INTEGER DOUBLE,
I ATTITUDE ARRAY(3) INTEGER,
1 TIME BIT(32).
I STAT DENSE,
F1 BOOLEAN,
F2 BOOLEAN,
F3 BOOLEAN,
UNUSED BIT(13).
| OP_MODE INTEGER:
DECLARE IMU_DATA IMU-DATA-STRUCTURE;
CALL ASM TO_ROUIINE ASSIGN(IMU _DATA).

re

to to o

In addition to the syntax for declaring a RIGID structure, this example shows the
DENSE attribute applied to the STAT node. IMU_DATA.STAT is both RIGID and
DENSE. The RIG!D attribute on the structure is inherited by ail of its nodes. If any addi-
tional nodes were defined below STAT, they would also be RIGID and DENSE, uniess the
ALIGNED keyword was specified. The RIGID attribute is always inherited (cannot be
turned off) since there is no “non rigid” keyword.

fue RIGID attribute allows any data layout to be mapped into HAL/S data tynes. It
does not impose any restrictions on the use of a structure or its components. However, two
structures cannot be of the same data type unlers neither or both are PIGID (ie . the
templates won't match).

9.4.3 Unqualified Structures

In the example above, note that “IMU_DATA" is the name of the template and the
name of the declared structure. This fact makes IMU_DATA an unqualified structure.

When s structure template is to be used in only one declaration, it is conveniernt to give
the structure the same name 23 the template. This permits the name of the structure to be
] omitied when referencing its nodes and terminals. Again referring (o the structure above,
PR the statement,
DO CASE IMU_DATA OP_MODE;
is legal, but the more convenient form,

DO CASE OP_MODE;

is alio permitted.
¥
S
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Unqualified structures differ from qualified structures (all previous examples) only in
the form of references to their components, It has aiready been stated that there is no exe-
cution-time penalty involved in using a structure terminal instead of a simple varisble; if an
unqualified structure is used. | o distinction has to be made in the source code ¢ither. Thus,
there is no disadvantage to using a rigid unqualified structure to force # collection of vari-
ables to be allocated in a particular sequence, except for possible alignment gaps.

Sometimes it 1s useful 10 convert a set of declared variables to the components of an un-
quahfivd structure. since all of the variables (now structure terminals) can be transferred to
or from a random-access device in a single FILE statement. Variables are also sometimes col-
lected in an unqualified structure for documentation purposes since this aliows them to be
discussed as a group under an *official” name which appears in the source code.

Now that structures and their uses have been fully described, only two data types re-
main. Bit strings. which are the general case of booicans, are discussed in Chapter 13, and
event variables, which may be thought of as “'real-time booleans”, in Chaptcr 12. The mate-
rial covered thus far in the text should allow most applications to be coded in HAL/S; the
handling of errors and exceptional conditions will be discussed in the next chapter. Then we
will proceed 10 put a collection of programs together and execute them as an integrated sys-
tem in Chaptes< 11 and | 2. Chapter 12 describes how the user may control execution rates
and inter-process communication and synchronization. The book concludes by discussing
several constructs that are provided for writing “system programs” such as 1/O device drivers
and memory management routines.
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Exercises

944 Giva

STRUCTURE A RIGID-
I B,
2 C INTEGER,
2 D VECTOR.
I E,
2 F,
3 G MATRIX(4.5),
3 H ARRAY(2.3) INTEGER DOUBLE,
2 | INTEGER:

STRUCTURE AF:
1 G MATRIX(4.5),
I H ARRAY(2,3) INTEGER DOUBLE:

STRUCTURE RAF RIGID:
I G MATRIX4.9),
I H ARRAY(2,3) INTEGER DOUBLE,

DECLARE X A-STRUCTURE,
Y AF_STRUCTURE,
Z RAF_STRUCTURE;
DECLARE INTARR ARRAY(2.3) INTEGER DOUBLE,

Are the following assignments ! gal”?

a) XEF =Y,

by Z = X.EF,;

¢) X.EFH = YH+ZH,
. ’ d) YG = 2G;
o e) X.B.C = Y.HS(1.1);

9.48  Consider the following structure templste and declaration:

STRUCTURE A:
| B SCALAR,
I C INTEGER,
I D VECTOR(6);
DECLARE A A-STRUCTURE(20)
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What do the following HAL/S subscripted vanables reference, and what are their types and
arrayness/copiness

9A

9B

al A%20)

b) AS(2 AT 10)
) Cs(l)

d) DS4 TO «)
¢) D§*. 4 TO &)

End of Chapter Problems

What are some of *he capabilitics that HAL'S structures give the program that would
otherwise be unavailable?

Wrize a HAL/S program that will rea® suaulated data from 3 redundant sensors on
channel § and commpute the middle value of the 3 redundant pieces of data.

Read an acceleration, velocity, attitude (3-vectors), and a scalar time tag after each
from each measurement unit. First read yrom unit 1, then 2 and 3 in that order.
Compute the middle value of the three measured values for cach quantity (using the
ABVAL built-in function to compare magnitudes of tiie vectors), and store these
values with their associated time-tags in a structure with the following template:

I BHEST ACCEL,
2 ACCEL VECTOR,
7 ACCEL_ TiM SCALAR,
! BEST_VEL,
2 VEL VECTOR,
2 VEL TIM SCALAR,
1 BEST ATTITUDE
2 PITCH VECTOR,
2 PITCH_TIM SCALAR.

-
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The ON FRROR Xeatement 104}
10.0 FRROR RIYCOVERY

Fach miplementation of the HALS language detines o set of runtine errons Fhese
errurs, of exvceptions, inchude

1Y nvalid arguments to bult-in functions, such as SQREC D,

2 VO errors, such as reading past the ena ot a lile,

3 handware detected errons, such as attempting to divde by zera;

4} and other condiions which may arse wlide executing certatn HAL S statements,

e inverting a singular matny and usang valid character subsenpts,

By default, when one of these errors oveurs, a standand fivup s pettformed, on ground-
based systems, an o1, 0r message may be generated as well, tn some cases, the standand tivup
is to print diagnostic information and terinnate the program, bat wsually some mnocuous
value s substituted for the otfending expression and exevution contine  For imstanee, of
SORTENY 15 invoked with a nepative X, the standant finup s 10 retum SQe ((ABNMND The
standant fixups tor all crrons defined woa compiler are histed i the corresponding Users
Gude,

The standand fisup nay not be approprate tor ali appheations, Hence, HAL S provides
A mechanmain that allows usersupphed HAL'S statements to gan control when an et
occurs, Iy this figure, an ON FRROR statement s used to handle anend of Hile crror,

LN RIIRY
n § FROITANG
] RLPLACE 10 By 10",
] DECLARE SUALAR,
" THPUTL DUTIUT, ENFECYED:
H NECLARE INTEZIR INITIALIOY,
" RINT, WIORG,
" ON TRROR
L} 10:%
[ €0 TO Dewr:
t 00 wWHILE TPUEL
n READLS) ILPUT. ENPECTEDL
" CALL NEINTPUT) ASSIGN(OUTRUT);
" IF OUTFUT 3 EXFLOIED THEN
N ICHT = RIGNY ¢ )
" 1%
N KRONG * WEONG o 1%
" ™o
H | none:
M WRITF(&) "RESULTS OF TESTING N';
L] WRITE(O) RIGNT ' SAMPLES CORRICT, ', WUONG, ' SAMPLES INORRICT';
LI Bt
n | proCEMRE(YY AssIGNIO;
L DECLARE SCALAR,
M 1. 0:
[ .
t .
4 .
M | cost x:
M| CLOSE YEST Xt
[ T A ot Ve Yot St TN

e

1
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10-2 Frror Recovery

Only one new construct s used i thas example:
ON FRRORS (10:5) GO TO DONEF;

This s an evecutable statement which establishes GO 1O DONE . as a handler for the end
of file ervor. When the ON FRROR statement is executed, the default error handhing (e,
standard fixup) tor the end of tile error s replaced by the GO TO statement supphed. The
function of the ON FRROR statement is to selectively replace the standard error handlers
under program control.

10.1 THF ON FRROR STATEMENT

Like the IF statement, ON FRROR is & componnd statement (i.c. a statement which
conttuins another statement). [t specities an acfion to be performed when an error oceurs.
Fius action nuiy be an executable statement, but GO TO is the most cometonly used in this
content. In tact, the action portion of = IN FRROR statement should be the most fre-
quent use of GO TO HAL/S, The example above, however, can be re-written without a
GO TO, as in ths ligure

n o frest_x:

1 IpRocRAM:

M REFLACE 10 BY "10";

L DICLARE INTEGER INITIAL(O),
" RIGHT, W ON3;

c .

c

c .

H ON ERROR

s 10:5

M [ :H

" WRITE(6) "TEST RESULTS FOLLOW';
" ARITEL6) RIGHT, WRONG:
M RETURN;

] [{TuH

] DO KMILE TRUE;

c .

c .

c .

" END;

n Jcrose:

In this example, a DO .. END group scrves as the action of the ON ERROR statement.
Note that in muking this change 1t was necessary to add a RETURN statement after the
WKITL statements. This s because after the action of an ON ERROR statement has been
evecuted, control falls through 1o the following statement, If the RETURN were not coded,
the DO WHILF TRUE loop would be revxecuted atter the WRITE statements and the
error probably would recur, resulting in an mfinits loop. The next figure illustzates *he flow
of control around an ON ERROR DO .. END group.
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10-4 Frror Recovery

After an error occurs and a user-specified action 1s taken, there is no way to resume
execution at the pomnt that the error was detected For efficiency reasons, the state of the
program immediately after the error 1s not saved, and hence cannot be restored.

The end of file example illustrates one difference betv 2en the HAL/S ON ERROR sys-
tem and the system of alternate retums of “END= ... " used in many lunguage: The ON
ERROR statement was coded outside of the DO WHILE loop., thus the overhead associated
with defining an end of file handler is paid only once, rather than at each READ statement.

The subscript in the ON ERROR statement consists of two numbers separated by a
colon The left number s an crror group . the nght number is an crror code within that
group. Denotin: _rrors by both a group and &4 code allows entire groups of errors to be
handied denti ully (see latery The group and code assignments of a particular 2rror arc gen-
erally the same among various mplementations of the language, though this is not guaran-
teed by the HAL/S Language Specification. The User’s Manual which corresponds to the
compiler in use should be consulted before using ON ERROR statements.

The compiler used 1n producing the listings for this book follows the same convention as
several HAL/S compders: all 1/O error are assigned to group 10, and codes 0-9 in this
group represent end of file erron on channeis 0-9. Thus, ON ERRORS (10:5) sets up a
handler for end of iile on channel five. Use of the macro:

REPLACE 10 BY °10™:

is used to improve readabihty.

If a program reads data from several devices, an end of file handler can be created for
each, e.g.

ON ERRORS (10:4) GO TO NO_MORE_CARDS:

ON ERRORS (10:5) GO TO END_OF  TAPE:

ete.

It may be mere convenient to write one handler for any 1/O error, this can be easily done
by omitting the error code as in-

ON ERRORS (10:) GO TO DONE:

or
ON ERRORS (10) GO TO DONE:

These forms both specify *“*any error code with the given group™, Finally, the statement:
ON ERROR GO TO DONF;

sets up “GO TO DONE ;" as the handler for all ervors (including end of file).
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Pt
FROGRAM;
DECLARE M MATRIX:

ON ERRCR
427

003
-
M= 0;
GO TO L1
ENDS
» -1
MM 3
L1:
»
KRITE(S) H;

IONOAOIMIIMIIIMI OBIONOAIIXIIX

CLOSE P;

ON ERROR is the standard means of handling exceptions which arisc from opcrations
on invalid data. For example. a runtime enor will result from attempting to invert a singular
matrix. The standard fixup for this error is to print a message, retumn the identity matrix,
and continue execution. In the program segment above an ON ERROR statement is used
to substitute a zero for the identity matrix.

It should be noted that use of this form of the ON ERROR statement replaces the
standard fixup. Hence it prevents the generation of an error message. Many implementations
impose a limit on the number of errors that may occur before the program is terminated by
the system: When a usersupplied handler is invoked, the error is not counted toward this
limit.

Once an ON ERROR statement is executed, the specified error handler remains in effect
until it is deactivated. One means of deactivating an error handler is shown below:

| 2]
PROGRAM;
DECLARE M MATRIX,
I INTEGERS
DO FOR I = 1 TO 104

OODOXTIZTITX
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] ON LPNUV

S 4:27
M 0o:

E -

n M= 0l
M GO YO L1;
M ENDS

E LI S8 §

M H=n

£ -
M L1 WRITE(6) HE
C .

[«

< .

H EHD:

M CN ERROP SYSTEM;
S 4:27

[

[

< .

M{ CLOSE #;

Here, the heyword SYSTEM s used in place of an exceutable statement as the action of the
ON FRROR. Thus statement has tho ettect of restoring the standard fisup for FRRORS
(4:27) To see why this statement s needed, suppose that additional inverse operations were
coded later n the program. and this statement was onutted. It one of these operations
caused an error, control would be transferred to the user handler in the nuddle of a loop.
This would be disastrous, since the compiler assumes that a loop can only be entered by
exeention of the DO .. . statement at its head. Thus, 1t an error handler 1s coded i a loop,
1t should abwavs be decetivated ar exit from the loop. In general, it is good practice to de-
activate error handlers as soon as they are no longer needed.

The statement:
ON ERRORS (X:Y) SYSTEM:

restores the default (system) recovery ection for error X:Y (group X, code Y). In addition
to SYSTFM and an evecutable statement IGNORF can be used as the action of an ON
FRROR statement, as in:

ON FRRORS (4:17) IGNORF.

This statement informs the error recovery system that inverting a singular matrix is not to
be considered an error; i.e. that the standard fixup (reruming identity ) is appropriate and
that exccution should vontinue without an error message or other notification. Depending
on the compuier in use. IGNORE may not be permitted tor certain errors.
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The ON ERROR Statement 10-7

When an ON ERROR statement is executed, an error recovery action is established for
an error or group of errors. Three recovery actions are possible:

1} an executable statement to recetve control, (in lieu of the standard fixap and an
; error message);

2) SYSTEM. which is the initial state and includes both the standard fixup and an error
message; and

3) IGNORE, which requests the standard fixup without an error message.

Any number of recovery actions may be in effect at one time. In a sense, the actions are
cumulative. If the code below were executed, four recovery actions would be in effect.

Pt
PROCRAM:
OECLARE SCALAP,
A, By C;
DECLARE INTEGER,
Xe Yo 23
ON ERRCR
Dos
WRITE(&Y A, By Cys Xy Y, T3
RETLWNG
(121
ON ERROR
10:S

PETURM:
ON EPRCR IGNCTE;
10¢

ON ERROR SYSTEM;
“:e

LAST_CARD:
cLost P;

IX ONN VR WIX VUIIIIZIIXIIIIZIZ

The net effect of these statements is: Any end of file error, except on channel five, will
be ignored. and any other error. except 4:2, will cause the WRITE and RETURN statements
to be executed. If error 4:2 occurs, the system action will be taken, and when 10:5 occurs,

. P will close. This shows that the handler for error $ (10:5) takes precedence ovcr the
handler for error § (10:). The general rule that applies is: When the error specifications in
séveral active ON ERROR statements in a single block apply to a particular error, the most
specific takes precedence. Thus, as each of the last three ON ERROR statements in P is
executed, the number 0. errors handled by the first and most general one is reduced.

Note that the rule above applies only to ON ERROR statements in a single block
(program, procedure, function, etc.). The effect of ON ERROR statements in nested blocks
; will be discussed in the next section. Note also that an ON ERROR stateraent has no cffect
until it is executed.
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10-8 Error Recovery

Exercises

10.1A Where does the flow of control go after the action of an ON ERROR statement has
been executed?

10.1B Why is it good programming practice to deactivate any error handler that is coded
inside a loop when that loop is exited?

10.1C What are the three possible recovery actions in the event of a runtime error?

10.1D Write the precedence relations for the 3 general forms of subscripting for the ON
ERROR statement when they occur in the same code block.

10.2 DEACTIVATING ERROR HANDLERS

An error handler can be deactivated in three way=:

1) by overriding it with a new h...dler,
2) by exiting from the containing block,
3) by using the OFF EKROR statement.
All of these methods are affecied by the HAL/S block structure. A procedure or function

cannot make any permanent change to the error environment of its caller. This statement is
a consequence of several rules which will be described with reference to the figure below.

[ Y
PRUGRAM;
ON ERROR IGNORE;
1:2

CALL B
CaLL G

[.H
PROCEDURE

ON ERRCR
12

€0 70 X3
Cail C3
Xt RRITE(6) ‘SOT AN ERROR‘}
:Lou 83
PROCEDURE:
cLose Ci
CLOSE A3

ZZTXIXIXTXIXIIT O IXIIX VWIIXIX
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None of the statements shown can produce an error; however we will discuss what
would happen if ERRORS (1:2) were caused by an additional statement inserted at various
points

It th: er or occurs in block A proper (i.e. outside of B and C), the IGNORE action will
be taken, ¢ en after B is called and returns. This is because any error handler defined in a
block is cincelled when that block RETURNSs or executes its CLOSE statement. When B
retums, tne error environment reverts to that in effect when B was called. In this case, the
IGNORE action is re-instated.

When the ON ERROR statement in B is executed, the IGNORE actica is temporarily
overridden by the GO TO action. This action then remains in effect until B retumns. If the
error oc:urs in B, but before the GO TO action is set up, the IGNORE action is taken.
Merely invoking a block does not change the error environment. When B calls C, the GO TO
action is still in force; if ERRORS (1:2) occurs in block C, control will be passed to the
label X in block B. In effect, C retumns to X instead of to the point of invocation. When this
happens, the error environment is restored to that which prevailed before C was called, just
as if C had returmed normally.

In the example, block C is aiso called directly from block A. In this case, of course, the
ON ERROR statement in B has no effect; if the error occurs in C whenr it has been called
from A, the IGNORE action is taken. Thus, we see that the range over which an ON
ERROR statement is active is not determined by the static block structure, but by the
actual sequence of CALLs and RETURNs.

The left-hand diagram below shows the static block structure of a program A, which
is suitable for describing the scoping ruls for variables.

‘s PN

Block Structure Cal Tree

*“‘outer” variable can be “upper” Liocks affect error
referenced. environment.

= st ma e e e e 55
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The right-hand diagram illustrates the range of ON ERROR statements within A, Band C. C
occurs twice in the diagram, at the ends of different limbs. Since all intervening blocks
between a given block and the top of the tree may be scanned for handlers when an error
occurs, a block's error environment depends not only on local ON ERROR statements, but
those in the calling block, and in the caller’s caller, and so forth. Block C may be affected by
B's error environment even though it cannot access B's variables.

Now that the basic concepts have been illustrated, the rules for deactivation of error
handlers can be stated precisely:

1) When a code block exits (by RETURN, CLOSE, or due to an error) the error envi-
ronment 1s restored to that in effect when the olock was entered.

2) An error handler may be replaced by execution of an identically subscripred ON
ERROR statement in the same block.

3) An error handler may be temporarily overridden by creating another handler in a
“lesser” block (i.e. lower in the call tree) which applies to the same error(s).

4) An error handler may ke completely erased by execution of an identically sub-
scripted OFF ERROR statement in the same block.

These are the only ways that an orror handler may be deactivated. Note that there is no
limit to how far up the call tree the system will search for a handler when an error occurs.
As stated previously, when a particular block contains several handiers that could apply to
the same error, the most specific is seiected. Other active blocks are searched only if no
handler at all for this error is found in the current block.

The OFF ERROR statement may be used to camcel the error handler created by a cor-
responding ON ERROR statement. There are only four possible forms:

OFF ERROR;

OFF ERRORS (nl:n);
OFF ERRORS (nl:);
OFF ERRORSnl;

and of these, the last two are equivalent. The effect is simply to cancel an identically sub-
scripted ON ERROR statement in the same block. If no such ON ERROR statement has
been executed, the OFF ERROR statement has no effect.

The primary use of the OFF ERROR statement is to re-instate an error handler in the
calling block which had been overridden by a local ON ERROR statement. An example of
this usage appears in the following figure.



L otwe,

PO N

fas

Deactivating Frror Handiers 10-11

A
FROGRAM;

ON ERRCR
60 10 x:
ALt 8

B:

PROCEDURE;
0N EFROR 1GNOPE:
OFF EPROR:

cLose B;

AONNIIONONAINONTONANIIITIIOONNTII

CLOSE a;

1t should be noted that the handler cancelled by an OFF ERRGR statement must not
only be in the same block, but it mu.c describe exactly the same erroris). For instance, the
sequence:

ON ERRORS! IGNORE;
ON ERRORS? IGNORE:
OFF ERROR:

would leave two handlers active, since the OFF statement is more general than the ON
statements. To cancel them both would require two statements:

OFF ERRORS(1:)%
OFf ERRORS;

Likewise, the sequence:

ON ERRORS(1:) IGWORE;
OFF ERRORS():2);

does not exclude ERRORS(1:2) from the handler. Unless there is an idenvically (plus or
minus a trailing colon) subscripted ON ERROR statement in the same block, OFF ERROk
will do nothing.

PR
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Exercises
10.2A In what ways is it possible for an error handler to be deactivated?

10.2B In the following examples of sequences of ON ERROK and OFF ERROR state-
ments, which handlers are left active after the sequence?

a) ON ERRORS! IGNOREL;
ON ERRORS(1:2) IGNORE,
ON ERRORS(2:1) IGNORE:
OFF ERROR;

OFF ERRORS(1:3)

b) ON ERRORS! KiNORE:
ON ERRORS(1:1) IGNORE;
ON ERRORS(2:) IGNORE;
OFF ERRORS(1:);

OFF ERRORS(Z:1):

10.3 OTHER ERROR TON JROL CONSTRUCTS

In addition to ON and OFF ERROR, which activate and deactivate error handlers,
HAL/S provides the SEND ERROR statement, which annunciates an error conuition, and
a pair of built-in functions which allow information to be obtained from the recovery
system

The SEND ERROR statement has two uses: to simulate the occurrence of system-
defined errors for testing and other purposes, and to allow the user to define additional
error types. It has only one form-

SEND ERRORS(nl:n2),

where n) and n2 are integers computable at compile-time and 1n the valid range of error
groups and codes sp cified by the appropriate HAL/S User's Manual. The effect of the
SEND ERROR statement is merely to trigger whatever handler has been set up for the
specified ervor.

When a SEND ERROR is executed, the error environment is searched for an applicable
ON ERROR handler. If the action is 1a executable statement, control is passed to it and
execution continues without sn error message. If the IGNORE option was specified, execu-
tion continues at the statement following the SEND ERROR, also without a message. If
the action is SYSTEM, or nc error handler is found, then an ervor message is gencrated,
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and either the run is terminated, or execution continues at the statement following the SEND
ERROR. The User's Manual states whether execution will continue® after an error of cach
syst=m-defined type. Generally, if the group and code are not system-defined (i.e. not listed
in the Uset’s Manual) the SYSTEM act:on allows execution to continue. Thus, it is possible
to write a “’standard fixup” for a user-defined error, as sk own below.

NETURN LOGIARSIX)) / LOG(10);

N jLOGl0°

M [ PURTIONIX) SCALARS

n QECLARE X SCaLAR;

" IF X >0 THIN

n RETURN LOGIX) / LO8(10);
L <ist

n oo;

" SEND ERROR
s 3
L]

n

L]

IND
CLOSE LoGle;

“low, when LOGIO0 is invoked with a negative argument, ercor 9.1 will result. This error
may be handled by the calling routine in the usual way; e.g.

DECLARE N SCALAR INITIAL(--1);
ON ERRORS$(9:1) DO;
N = N0,
END;
WRITE(6) LOGIO(N},

This code will write log) (100) If the next two statements were:

OFF ERRORS(9:1);
WRITE(6) LOG'x -99);

there would be no active handler for error 9:1, 50 an crror message v oula be printed and
execution would continue at the second RETURN statement i» LOGI0. Thia RETURN
statement serves as a “‘standard fixup’ for a negative crgument to LOGILO; in this case,
78 (99) would be retumed by the function.

*Some implementations may allow an ¢rroe 10 occur (o7 be skivisted) a given numbey of times before tes-
minating. Others may always continue or always terminate.
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10-14 Erra Recovery

SEND ERROR is a relatively expensive statement: when an error is sent, many machine
instructions may be needed to search the error environment for an appropriate handler.
Hence, 1t should be used only to indicate exceptional conditions, or ‘‘errors’’, not condi-
tions which are expected to occur frequently. The SEND ERROR statement is most
appro, -riately used in utility routines (procedures and functions that are invoked from many
plac o indicatg 1afBlid arguments, and in instances where a ‘‘catastrophic™ condition is
dc . md by*¢ely low level code but can only be handled in an outer block, perhaps by some
sort of controlled restart.

In addition to the ON, OFF, and SEND error statements, HAL/S provides two built-in
functions, ERRGRP and ERRNUM, which provide information about previous errors.
These functions do not =:quire any arguments; they return integers which represent the
group and code, respectively, of the last error that occurred in the process* that invokes
them. If no errors have occurred, they retum zero.

These functions are used primarily when a number of errors are handled by a single
ON ERROR statement, as illustrated below:

ON ERROR DO;
WRITE(6) ‘RUN STOPPED DUE TO ERROR’
{ ERRGRP| | *:’ || ERRNUM;
RETURN;

END;

One additional form of ON ERROR statement is provided. This form allows event
variables to be manipulated when an error occurs. The form of this type of error recovery
action is described in the language specification. Event variables are discussed in Chapter
Twelve,

Exercises
10.3A What are the two uses for the HAL/S SEND ERROR construct?

10.3B Say we enter a program block, P, which calls some procedure A, which in turn
calls procedure B. In the code block for B, there is an ON ERRORS(1:) IGNORE
statement and no other error handlers. Now say error (1:3) occurs during the
execution of the program. Does the program need to search code blocks A and P
for the error handlers for error (1:3) or will it automatically ignore the error because
the statement ON ERRORS$1 was found in that block?

*The teim process is defined in Chapter 11. Here it may be taken to mean a program and all of its internal
blocks.

N

—— i y e

-

B s

© e,




PR R e e

Other Error Control Constructs 10-15

End of Chapter Problems
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10A  Consider a HAL/S program with the following lexical structure:

S

P: PROGRAM Say the execution of the program ‘
. procedes as follows: !

: P - @ executed ,
ON ERRORS! IGNORE: P calls A :
ON ERRORS2 IGNORE; calls ;

! . @ A~ @ executed

| _ A calls B
, A: PROCEDURE; B - executed
. . @ B - executed
ON ERRORS(1:2) IGNORE; B retums to A
OFF ERRORS(1:); A~ () executed
. @ A - @ executed
B: PROCEDURE; A returns to P
OFF ERRORS(1:2); P - @ executed
ON ERRORS(2:1) IGNORE; .
ON ERRORS(3:) IGNORE; execution stnps

‘ . . What happens if the following ;
. ‘ @ errors occur at these times (ie., |
¢ITOr message OF NO error message)? q

OF!; FRRORS(2:);
a) ERRORS(1:1) at

X
@ b) ERRORS(3:1) at

e 1 CLOSE B; ) ERRORS(2:1) at
' : : d) ERRORS(2:2) at
CLOSE.A;@ ¢) ERRORS$(1:2) at
f) ERRORS(2:1) at

@ g) LRRORS(2:1) at

| CLOSE P; h) ERRORS(I:1) at

. ‘1 i) ERRORS(1:2) at
§) ERRORS$(1:3) at
P ! k) ERRORS(3:3) at
1) ERRORS(1:1) at

b et b
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11.0 STRUCTURING LARGE APPLICATIONS

In this chapter the discussion of the HAL/S facilities for building a program complex
consisting of many separately compiled pieces is presented. First, we will describe the unit : 3
of compilation, which has been a PROGRAM in previous chapters but is not restricted to ’
this type. Then we will discuss means of putting these units together in a way that is suit-
able for ~ particular application. Finally, we will introduce the concept of multi-program-
ming and discuss some of the methods of safely sharing code and data between programs that
execute “simultaneously”, This discussion will lead into the real-time control statements to
be presented in Chapter Twelve.

11.1 THE UNIT OF COMPILATION

A unit of compilation is a sequence of HAL/S statements which comprise a complete, 1
valid input to the compiler. It must be either a program, a procedure, a function or a com-
pool (common data pool). Programs have already been discussed at length, though no means
of invoking them has yet been presented. This is because programs receive control directly
from an operating system, not from other HAL/S code.

Procedures and functions can be compiled independently so they can be shared among
programs; a compool is a block of data that can be shared among separately compiled units.
Thus, prog-ams are the primary compilation units while the others provide global code and ;
data.

There are two major reasons for dividing a software system into separately compilable 1
units. Obviously, when several programmers collaborate on a system, it is convenient if they
can compile their own work independently. A more important reason stems from the way
program units receive control. The capabilities of the operating system in use may determine |
the appropriate structure for an application. ;

Under an operating system which supports the full HAL/S real-time syntax (described 1n !
Chapter Twelve), many programs may be “simultaneously” active and compete for the use i
of the computer hardware based on a user specified priority. Provision is made for programs H
to be run cyclicly, to wait for given occurrences and to receive control when interrupts i
occur. The operating system provides these capabilities for the invocation of PROGRAMs ;
4 and TASKs (collec.vcly called processes). Thus, a software system may be divided into :
iv programs to implement a desired dynamic (real-time) structure. :

Unlike procedures, functions and tasks, programs and compools may nof be nested in
any other blocks.

The following figure shows how these blocks might be used in a simple flight application.
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common common
data subroutines
LIMIT:
FUNCTION
ane POOL:
COMPOOL
ROTTSSIPIPPITITION. N \information €low) FILTER:
position PROCEDURE
! velocity
pitch command
roll command
. INTERPOLATE :
H PROCEDURE
1 L
CONTROL : GUIDANCE: @ NAVIGATION:
PROGRAM PROGRAM PROGRAM
‘ :zz:? INTERNAL:
e PITCH: FUNCTION;
S ‘ KALMAN:
4 PROCEDURE;
& 1170
< ETC.: NUTHER:
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The Unit of Compilation 11-3

This diagram shows the software divided into *hree programs, each with internal pro-
cedures and functions, and a compool and three independently compiled subroutines. All
together, there are seven compilable units which must be compiled in an appropriate se-
quence and linked together. In the remainder of this section we will discuss the rules for
writing the components of a program complex.

The LIMIT function and the procedures, FILTER and INTERPOLATE, are compiled
separately so that they can be called from any of the programs. Such procedures and func-
tions are called comsubs (from “common subroutines™). A comsub mav be coded exactly as

if it were contained in some program. For instance, the LIMIT function might be exactly as
it appeared in Chapter Seven.

LIMgY:
FLLCTIONIVALUE, BOUND) SCALAR;
DECLAPE SCALAP,.
VALUE, BOWND;
IF VALUE > BOLND THEN
PETURN BCUNDS
IF VALUE < ~BOUND THEN
RETUAN -BOUND;
RETURN VALUE:
CLOSE LINITS

IXTIXTTXIXX

Aside from the fact that a comsub is not contained in any block, and thus cannot reference
outer variables via name scoping rules, all of the statements about procedures and functions
made in previous chapters also apply to comsubs.

Some of the consequences of this general statement may not be immediately obvious,
For one, comsubs may have additional procedures and functions nested within them. Scop-
ing rules apply to blocks contained in a comsub just as they would to blocks contained in a
program. In fact, the only significant difference between an independently compiled proce-
dure without parameters and a program is the manner of invocation: programs are never

CALLed and procedures normally do not receive control directly from the operating sys-
tem,

It is also worth noting that the error recovery system does not distinguish between com-
subs and internal procedures and functions. If an error occurs in 8 comsub and no local ON
ERROR statement applies, the error environment of the calling block is searched, whether

that block is a program, another comsub, of ah internal procedure of some program or
comsub.

Comsubs are also referenced in the same way as corresponding intemal blocks; there is
no way to tell by inspection of a CALL statement or function invocation whether the refer
enced block is internal to the compilation unit or external (a comsub), Comsubs may have
any number of arguments of any type, exactly as described in Chapter Seven. The various

e At 3 e AT hlan 3 i s

R

Lo

e v o rimetia SaNS

L an, Gl tn

N



&

11-4 Structuring Large Applications

rules about matching data types, restrictions on ASSIGN parameters, automatic conversions,
etc., still apply. In order to enforce these rules the compiler needs to know the declared
types of comsub’s formal parameters. This information is communicated via the block tem-
plate.

Under most implementations of the HAL/S compiler, a block template is automatically
generated whenever a program, comsub, or compoot is compiled. The block template con-
tains all the information needed to reference that block from another compilation unit. In
the case of a comsub, this information consists of its name, the sequence and types of its
formal parameters, and the type of its return value, if any. A comsub is made accessible to
a compilation by including its template. For instance, a program which uses the LIMIT com-
sub is shown below:

D INCLUDE TEMPLATE LIMIT
P: PROGRAM;
DECLARE X SCALAR RMITIAL(12);
X = LIMIT(X,10);
CLOSE P;

INCLUDE is a compiler directive, as denoted by the character D in column one. It in-
structs the compiler to merge the template for block LIMIT into the compilation at the
point of tlie INCLUDE directive. Any number of templates may be so included; the NAVI-
GATION program might be compiled as:

column 1

4

D INCLUDE TEMPLATE GNC_POOL

D INCLUDE TEMPLATE LIMIT

D INCLUDE TEMPLATE FILTER
NAVIGATION: PROGRAM;

CLOSE NAVIGATION;

Note that these templates are included prior to the program statement. This syntax
emphasizes the fact that the blocks GNC_POOL, LIMIT, and FILTER are external to NAV-
IGATION. The printed output from the compiler contains a listing of each template that
was included. The template for LIMIT appears below:

LIMIT: EXTERNAL FUNCTION(VALUE,BOUND) SCALAR;
DECLARE SCALAR, VALUE, BOUND;
CLOSE LIMIT;

The template for a comsub consists of the header line with the word EXTERNAL inserted,
the declarations of any formal and assign parameters, and the CLOSE statement. These are
the only portions of a procedure or function block that are relevant outside that block®.

*Scoping rules make other data items irrelevant, and no way of branching into the middle of a block is
provided.
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The Uni: of Compilation 11-5

The format of a block template is unimportant when a compiler with automatic tem-
plate generation and the include directive is used. These features are present in all current
compilers, but they are not included in the HAL/S Language Specification and thus are not
guaranteed to be present in all implementations. The format of a template /s specified, how-
ever. Hence, if the template cannot be INCLUDEd, it may be hand-coded as part of the
<ource prior to the program statement.

A program may invoke a comsub if it includes the template for that comsub prior to the
program statement. This mechanism provides for executable code to be shared among sepa-
rate compilation units.

Programs generally need to share data as well: the only way to pass information from
one program to another is via a compool. A compool is a named block of DECLARE, RE-
PLACE, and STRUCTURE statements; the variables in a compool are accessible to any com-
pilation unit which INCLUDEs the compool’s template.

The diagram at the beginning of this section shows how a compool is used to interface
the Guidance, Navigation, and Control programs. This compool could be coded as shown
below.

GNC_POOL:
COHFOOL;

FOLLONING DRCLARES ARE NAV TO GUIOANCE INTERFACES

OECLARE PCSITION VECTOR;
DECLARE VELOCITY VECTOR}

FOLLOWING DECLARES ARE OUIDANCE TO CONTROL COMMANDS
CECLARE PITCH_COMMAND SCALAR3

DECLARE ROLL_COMMAND SCALAM INITIALIO)
CLOSE GNC_PCOL3

Z2ZTX O T O XX

As this indicates, a compool is delimited by a block header and a CLOSE statement
much like the other block types. Unlike other HAL/S blocks, however, a compool consists
only of a DECLARE group; no executable statements or nested blocks are allowed. It may
contain DECLARE and REPLACE statements and structure templates. Generally, any
DECLARE statement which may appear in a program may appear in a compool. There arc
only two exceptions; both resulting from the lack of executable code in a compool; no
AUTOMATIC data is allowed in a compool, and no label (c.g. function and NONHAL pro-
cedure) declarations are allowed in a compool. It should be noted from the example that
static initialization is allowed, and takes the same form as in other blocks.
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11-6 Structuring Large Applications

Compiling a compool serves two purposes: to reserve a block of storage containing any
specified initial values, and to generate the compool template. A compool template contains
all of the information present in the compool source. In fact, if automatic template genera-
tion is not available, the template may be constructed from the source merely by inserting
“EXTERNAL” before “COMPOOL"” in the block header. Normally, however, only an IN-
CLUDE directive is needed to make compool variables accessible to another compilation
unit.

When a program includes a compoo! template, the variables in that compool niay be ref-
erenced, assigned, and used in any way appropriate to their data types. Placing a variable in
a compool rather than at the program level does not, by itself impose any restrictions on the
way that variables may be used by the program. This includes references to the variable

from nested blocks; we will discuss the application of scoping rules to compool variables
and comsubs in the next section.

Exercises

11.1A What are the major r.asons for building a program complex with comsubs and com-
pools, as opposed to a single large program?

11.1B Say an error occurs in some comsub, and no ON LRROR statement that applies to
the error is found in the comsub. What determines the error handler in this case?

11.1C a) Since a compool contains no exccutable statements, why must it be compiled at
all?

b) What is the purpose of a compcol template?

11.2 BUILDING A PROGRAM COMPLEX

From the viewpoint of scoping rules, the templates included in a compilation comprise
an outermost block in which the main compilation unit (i.e. the program, comsub, or com-
pool being compiled) is nested.

Chapter Seven described the HAL/S scoping rules in terms of block diagrams like the one
following. Fromn these rules it follows that:

1) The comnsub S can be called from anywhere within blocks P and Q.
2) The variables A and B can be referenced from anywhere in blocks P and Q.
3) The variable X can be referenced only from block S.

This example illustrates the position of template with regard to the main compilation
unit.

by m
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Compilation Block Structure for Scoping Rules

C: EXTERNAL COMPOOL:

DECLARE SCALARA B:
CLOSE C:

S: EXTERNAL PROCEDURE(X) : DECLARE SCALAR. 4.8
DECLARE X SCALAR:

5: PROCEDURE;

CLOSE S: DECLARE X;
P: PROGRAM:
Q: PROCEDURE: . .
CLOSE Q: P: PROGRAM;

From the diagram, one might conclude that A and B can be referenced from block S:
This is true if and only if the template C is included when S is compiled. Thus, the “outer-
most block™ is not universal; its contents may appear different to cach compilation unit,
depending on which templates are included. This mechanism supports “private’” compools
and comsubs, as we shall see.

Returning to the example of the communicating GUIDANCE, NAVIGATION, and
CONTROL programs, suppose that the templates included by each of the seven compilation
units are as indicated below:

Compilation Unit Type Templates Included
NAVIGATION PROGRAM GNC_POOL, LIMIT, FILTER
GUIDANCE PROGRAM GNC _POOL

CONTROL PROGRAM GNC_POOL, FILTER, INTERPOLATE
GNC__POOL COMPOOL NONE

LIMIT FUNCTION NONE

FILTER PROCEDURE LIMIT

INTERPOLATE PROCEDURE GNC _POOL

With this structure, the contents of the “outermost block™ vary considerubly from compila-
tion to compilation, as shown:
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11-8 Structuring Large Appiications

POSITION, VELOCITY POSITION, VELOCITY
PITCH CMD, ROLL CHD LN PITCH €D, ROLL (WD
[ _tmT ] r
g GUIDANCE
FILTER
NAVIGATION

*mdicates the module being comptied.

As the previous table implies, any type of compilation unit may include the template of
any other compilation unit. Thus, comsubs may access compool variables or call other com-
subs; compools may include the templates of other compools, (to utilize global REPLACE
statements defining array sizes, for instance). Program blocks also have templates which may
be included by any type of compilation unit: we will see the utility of program templates in
later sections.

From this discussion it can be seen that access to comsubs and compool variables is con-
trolled by the inclusion of templates. In building a particular program complex it may be
desirable to set up managerial rules concerning which modules may access which data and
subroutines. Comsub templates are included one at a time, but when a compool template is
included, all of the variables in that compool become accessible. If it is desirable to partition
compool data, either of two approaches may be taken: the ACCESS system may be used os
multiple compools may be created.

ACCESS is a HAL/S keyword. Under some versions of the compiler, an externally main-
tained data base of access-rights information can augment the normal scoping rules to
further vestrict (not expand) the visibility of comsubs and compool datu. This system is im-
plementation dependent, somewhat complicated, and will not be discussed further in this
book. However, further details are contained in the Language Specification,

The simplest method of restricting access 1o compool variables is via multiple compools.
For instance, the following structur. might be a better arrangement of the compoo! data for
the example program complex.
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G TO C: COMPOOL

N_T0 G: COMPOOL
PITCH_CMD, ROLL_CMD

POSTTION, VELOCITY

< CONTROL GUIDANCE NAVIGATJON

Here, the interfaces between GUIDANCE and CONTROL are in one compool, and the
interfaces between NAVIGATION and GUIDANCE are in another, The NAVIGATION and
CONTROL vrograms would include only one compool each: in this way multiple compools
tend to limit the possible influences of one compilation unit on another. In this case. no
data is shared between NAVIGATION and CONTROL.

The GUIDANCE program would have to include the templates for both compools. The
order in which these templates are included is irrelevant: all compools are included at the
same level. Thus, the previous diagrum of scoping rules while compiling GUIDANCE still
holds. Since there is always only one scope levei outside of the main unit of compilatior.,
the names of variables in one compool must not duplicate the names of variables in another
compool If both are included by a single complilation unit.

There are, of course, other considerations in structuring an application as a set of com-
pilatior: units. For instance, it may be convenient to use only one compool so that all global
data can be found in a single listing or so it will be contiguous in memory “or telemetry pur-
poses. The addressing imodes of some computers may create an efficiency trade-off between
the number of compools and their average sizes. Finally, in the next section, we will see that
compools can be eliminated through the use of TASK blocks; this decision involves addi-
tional trade-offs.

Suppose, however, that the original configuration of three programs, one compool, and
three comsubs, has been chosen. In this and the previous section we have described how the
various compilation units are coded. The remaining problem is to compile them in the
appropriate order. Since templates are automatically generated® when cach block is com-
piled, the “lowest level” compilation units must be compiled first. Given the table of tem-
plates included per compilation presented earlier, an apnropriate sequence for this program
complex is:

*If sutomatic template generation is not availabdle, the order of compilation is urelevant.
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11-10 Structuring Large Applications

GNC_POOL, LIMIT, FILTER, INTERPOLATE, GUIDANCE,
NAVIGATION. CONTROL

Generally, the necessary order of compilation can be determined by inspection. Starting
with compeols, then proceeding to “utility” comsubs, other comsubs, application programs,
and finaily “control’ programs is usually adequate. However, the following algorithm will
always produce an acceptable sequence if one exists:

1) Produce a list of templates included by each compilation tlike the one given here).

2) Compile each module which requires no templates (except for those templates al-
ready generated).

3) Remove the modiles that have been compiled from each list.

4) If not done, repeat step two.

It i< possible that a point will be reached where every module requires at least one template.
If su. th2n there s no suitable sequence. This can happen for three reasons. all of which are
rare:

1) Recursion' If A calis B and B then Calls A, no sequence is appropriate. Solution
Change the structure, recursion will not work anyway.

2) A pair of programs schedule or wait for each other. Solution: Hand-code one tem-
plate or re-structure.

3) Trouble with initialized NAME variables. Solution: Break the loop of circular refer-
ences (see Chapter Thirteen).

These difficulties almost never occur in well designed program complexes.

The constructs we have discussed in this chapter are intended for putting a collection of
HAL/S modules together. A means of invoking NONHAL procedures and functions was pre-
sented in Chapter Seven. If part of a program compiex (¢.g. special-purpose handware inter-
faces) must be written in assembly language. a few ac. .tional constructs are helpful. These
afre:

1) RIGID compools, which are similar in concept to RIGID struciures;
) EQUATE EXTERNAL statements, which can make [HAL/S variables accessible from
assembly languag:; and,

3) the ability to write comsubs in assembly language. A set of macros for this purpose
is genernlly supplied with the compiler system,

More detail on «hese features may be found in the Language Specification and the appropri-
ate HAL/S User's Manual.

Another option in designing a program complex is the use ¢ TASK blocks instead of

programs. The software we have been discussing co.gd be writty.. a8 the single compilation
unit shown in the figure on the next page.
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p:

PROCRAN;
OICLARE vECTOW,
DECLAR~ASCALAR,

LImIT:
FUNCTION JCALARG

CLOSE LIMIT:
FILTER:
PROCEOURE ;

cLont FILTER;
INTERPOLATE:
PROCEDUNR:

" “os

CLOSR INTRRPOLATE:
SUIDANCE:
TASKS

CLOSE SUTOANCE)
MNAVIBATION:
TAN

CLOSE NAVISATION;
CONTROL !
Tam:

see

CLOSE CONTROL
CLost P;

I3 N IITF A& ITIX & ITIX N XIX N IIIX O "313333

POSITION, V7. CITY:
PITCH_CMO, ROLL_C1O;

CONTENTS OF GUIDANCE PROSRAN LWHODIYIED

Like programs, tasks sre code blocks thet receive vontrol directly from the operating
sysiem. Tasks cannot be CALLeC; they are used to implement real-time roquirements in the
same way as progsams. In [act, the only distinction betwoen programs and tasks is that tasks
must always be nested in programs, and may not themacives contain fusther program or task
blocks. Thus, the only change necded 10 convert a program 1o » task is in the header state-
ment; the declare group, executable siatements, and any nested procedures and fus ctions

remain cxactly the same.

°

PR PP



"

11-12 Structuring Large Applications

HAL/S allows one level of nested real-time processes: tasks within programs, Scoping
ules treat all blocks the same. Thus, a task and all of its internal procedures and functions
may access data declared at the program level.

Task blocks allow any real-time structure to be implemented within a single compilation
unit. In Chapter Twelve, a set of real-time control statements will be presented. These ate-
ments instruct the operating system to start executing a program or task at some rate and
priority, to stop cycling a process, and so forth. The use of tasks as well as programs to im-
plement a real-time structure tends to minimize the amount of compool data, and allows re-
lated processes to be consolidated in a single compilation unit. One disadvantage of using
task blocks is that they can only be SCHEDULEd, CANCELLed, etc., from within the con-
taining program. If a system consists of several programs, each containing tasks, then the
“control” code which activates and de-activates the various processes must be distributed
among the several programs.

Exercises

11.2A Consider the following block structure of a program complex:

DECLARE SCALAR, A, B;

P: PROGRAM;

F: FUNCTION;
DECLARE INTEGER, A, B .

P. PROCEDURE ;
DECLARE | INTEGER ;

From which blocks can the scalars A and B be referenced?

11.2B In -he figure on page 11-2, it is shown that the compool GNC_POOL is not included
in the compilation of the unit FILTER. Why not?

ke e bl s B <t e
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11.2C Why is it desirable that the names of variables in a compool be unique with respect
to the names of variables in other compools?

2D The text states that a reasonable onder for compiling the various nnits for the exam-
ple on page 11-00 is:

GNC POOL. LIMIT. FILTER, INTFRPOLATE, GUIDANCE,
NAVIGATION, CONTROL:

For cach of the following possible orders of compitation, state whether they will
necessitate the hand coding of one or more templates, and why.

a) GNC _POOL, INTERPOLATE, GUIDANCE, LIMIT, NAVIGATION, FILTFR,
CONTROL

) GNC _POOL. INTERPOLATE, LIMIT, CONTROL, FILTER, GUIDANCE,
NAVIGATION

¢) GNC_POOL, INTERPOLATE, GUIDANCE, LIMIT, FILTER, CONTROL,
NAVIGATION

d) NAVIGATION, CONTROL, GUIDANCF, LIMIT, FILTER, INTERPOLATE,
GNC POOL

11.3 MULTI-PROGRAMMING CONSIDERATIONS

We have used the term “process™ to refer to cither a program or a tusk; this terminology
is used throughout the HAL/S documentation. The term multi-processing, however, has
come to refer to the cxecution of software on a computer or set of linked computers which
can literally execute more then one piece of code at a time, e.g. programming multiple
physical processors, The term “multi-programming™ refers to the appearance of this situa-
tion: the use of either actual multipie processors or simulated multiple processors. In the
latter case, the computer’s central processing unit is “time-shared™ or allocated to cach
active process log a brief interval in successton. Realtocation of the CPU may result from
initiation or completion of 1/0, expiration of a time hmit, or other factors. Sinice it is not
possible to predict which HAL/S statement will be executing when a “process-swap™
occurs®, programs must be designed so that a swap can safely occur at any point.

*In fact, the timing may not be repeatable.
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11-14 Structuring Large Applications

LR LIS 8
u | PROGRAN;
: " DECLARE SCALAR,
; L} A8, C;
; c
c .
c .
" IF A NOT & 0 THEN
" 00;
" 8=C/AS
¢
! c .
c .
" £ND;
nlr
. u | Tasx;
[} A0
P u | cLose 1;
H | CLOSE MLTI;

Consider the above code. Suppose that MULTI receives control and executes the IF
statement, finding A not equal to zcro: then, for some reason, the processor is reallocated
to task T. When T completes, MULTI will resume where it left off, and divide by 2ero.
The problem is that two processes share data (viz. A) without any protection from an un-
timely process-swap. If we could guarantee that the swap would never occur hetween the
test for A=0 and the division by A, the problem would be solved. This can be done by
means of the UPDATE block and locked data, as shown below.

n | serTER:
| PROGRAM;
" DECLARE A SCALAR LOCK(1)}
" DECLARE SCALAR,
" 8, C: -
[ .
. ' ¢ .
Ll ¥ . [
[ ‘ ‘

u| uroare;
" IF A NOT ® 0 THEN
N 003
" BEC/AS
[} END3
n| crose;
Nl n

. Nl TASK:

: M| urcates
N Ar
n]| cuose:
n| crose 13
nj close sevren:

.‘0

4
N
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Three changes have been made in the BETTER program: the variable A has been de-
clared with the attribute LOCK(1), and both uses of A have been enclosed in UPDATE
blocks. The parenthesized **1'* indicates the assignment of A to lock group one. The use of
other lock groups is discussed later in this section.

Data which is used by more than one process should normally be locked. Locked data
can only be referenced from within an update block: the system ensures that only one up-
date block which uses a given lock group is active at any instant of time. Thus, this capabil-
ity is as good as preventing process swaps over a sequence of statements: a swap may occur,
but the new process will not be permitted to execute an update block that pertains to the
same lock group. An update block allows a process to obrain exclusive access to one or more
locked variables. When an update block finishes, the locked variables become available to
other processes, which also must access them via update blocks.

An update block is executed when the sequentia’ flow of control reaches it; in this re-
gard it behaves like a simple DO . .. FND group. '.owever, from the viewpoint of scoping
rules, an update block is equivalent to any of th other block types; it may even have its
own DECLARE group. An update block behaves like a procedure with respect to error re-
covery, except that the “calling” block is defined to be the immediately containing block.
An update block may be nested in a block of any other type (except compool), and may
contain further procedure or function blocks. There are some restrictions on the executable
statements that may be used in an update block. The following are prohibited:

1) 1/O statements,

2) Calls to procedures or invocation of functions, except for those nested in the update
block, and

3) Real-time statements except for SET, RESET, and SIGNAL (see Chapter Twelve).

These statements are not allowed in update blocks, primarily because they potentially take a
long time to execute. It is desirable to minimize the time spent in an update block because
while an update block is executing, other processes may be stalled even if those processes
are more critical (of a higher priority).

It is almost always necessary to LOCK data which is used by more than one process. The
compiler does not enforce this rule, and there are cases (e.g. read only data) in which the
protection offered by locked data is not required. These cases are the exception rather than
the rule. For instance, the GNC_POOL compool from the earlier example should be coded
as:

GNC_POOL: COMPOOL;
DECLARE POSITION VECTOR LOCK(1);
DECLARE VELOCITY VECTOR LOCK(1);
DECLARE PITCH_CMD SCALAR LOCK(2);
DECLARE ROLL_CMD SCALAR LOCK(2);
CLOSE GNC_POOL;
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11-16 Structuning Large Applications

Here, two lock groups (1 and 2) are used. Group 1 is used for the Navigation to Guid-
ance interface, and group 2 is used for the Guidance to Control interface. The selection of
lock groups is entirely up to the user; the only constraint imposed by the HAL/S system is
an implementation-dependent mavimum number of lock groups. It would be possible to use
the same group for all locked data, and this may be convenient during initial development.
An appropriate assignment of lock groups, however, can lead to improved throughput. This
is because several update blocks can be active simultaneously provided that each uses a dif-
ferent lock group, or set of groups, with no overlap. Hence, the overhead associated with a
number of process swaps may be avoided. Furthermore, the amount of jitter in cyclic proc-
esses may be reduced, since the chances of being stalled or suspended due to update block
conflicts are Jessened. In our exampie, Control will never have to wait for Navigation since
their update blocks reference variables from different lock groups.

The Guidance program might begin as in the figure below. As this code implies, it is
sometimes preferable to copy a small amount of data (Pt SITION and VELOCITY) rather
than extend the update block to include all of the comp tations involving these variables.
This minimizes the impact to other processes while stili af srding the protection against, for
instance, processing a vector that has been only partially uy lated.

6hC_PIOL!
EXTERMAL COMPOQLS
CECLAPS FOSTTION VECTOR(3! LOCK(113
OECLERE VEILCCITY VECTORE3) LOCK(1);
DECLARE PITCH_CCMMAND SCALARS
DICLARE ROLL_COI™MAND STALAR INIVIAL(O):
CLos”:

INCLUDED
TEMPLATE

VERSION 1

GUIDANCE:
PROTRAM;
CECLARE VECTOR,
VEL2: POSNZ;
DECLARE X, Y, Zs OTHERS;
€OPY_INPUTS:
UPJATE;

VELZ = VELOCITY;

PCINE = POSITICNG
CLOSE COPY_INPYUTSS

ONO0 IXMIMIIZTIIZT O XXIXIXIIXIXX

CLOSE GUIDANCE;

F

This example also shows a labelled update block. The label 1s optional, and is used here
only for self-documentation,

There is one exception to the general rule that locked data may only be referenced from
within an update block: A locked variable may be passed as an assign parameter to a proce-
dure. This does not defeat the protection, however, since the corresponding parameter
declaration must also specify the LOCK attribute; thus it in turn can only be referenced
from within an update block or passed to further procedures.
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Multi-Prog Considerati 11-17

The update block and locked data provide a means of safely sharing data among inde-
pendent real-time processes; a similar mechanism for shared code is provided via EXCLU-
SIVE procedures and functions. This type of protection is specified more simply. Just the
appearance of the word EXCLUSIVE on a procedure or function header makes that block

accessible to only one process at a time. To see how and why this feature is used, consider
this function.

MEAN:
FUNCTIONCA) SCALAR EXCLUSIVE;
DECLARE A ARRAY{®) SCALAR:
DECLARE TOTAL SCALAR INITIALIQ) AUTOMATIC:
DO FOR TEMTORARY I 3 1 TO SIZE({A));
TOTAL = TOTAL ¢ A 3
1

END3
RETUPN TOTAL / SIZE({A]);
CLOSE HEAN;

IIX LUXTITXIIT

Suppose the MEAN function was not exclusive. If two processes invoked it, there could
be a conflict in the use of TOTAL, even though it is only assigned from within MEAN. If
one process had executed part of the loop when the other invoked MEAN and AUTO-
MATICally re-initialized TOTAL, the first process would get an invalid result. Thus, the
problem with sharing procedures and functions among processes is a shared data conflict on
the local data declared in the shared block. This problem can be avoided by making shared
code blocks EXCLUSIVE. No new construct s needed when an exclusive procedure or func-
tion is invoked, but the system will prevent multiple simultaneous users of the block by
stalling the second process that tries to invoke it. Exclusive routines are sometimes used for
operational reasons having nothing to do with shared data. For instance, a procedure to do
inertial measurement unit (IMU) calibration might be made exclusive simply to avoid the
risk of calibrating more than one at a time.

Another keyword that can be specified instead of EXCLUSIVE is REENTRANT.
Neither one is the default: if a procedure or function is not EXCLUSIVE or REENTRANT

then it cannot safely be invoked from multiple processes. but no protection mechanism is
present.

A REENTRANT procedure or function may be executed “‘simuitancously” by severe!
processes. That is, if program A is executing a reentrant procedure, R, when it is interrupted

by program B which also invokes R, when B completes and A resumes, there will be no ad-
verse affect.

Simply coding the keyword REENTRANT is noz sufficient to make a block safely “re-
enterable”’. The following rules must also be obeyed:

1) Any block invoked by the reentrant block must also be reentrant, and
2) Any local data must be declared to be AUTOMA 1'1C whether it is initiatized or not.
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11-18 Structuring Large Applications

We have already stated that the difficulty in sharing a code block is really a conflict in
the use of local data. Inside a procedure or function with the REENTRANT attribute, the
effect of the AUTOMATIC atrribute is expanded. Each uscr of a reentrant procedure ac-
cesses a separate copy of the local variables if they are automatic. Thus. any vonflict is pre-
vented. Parameters and TEMPORARY data cannot and need not be automatic. The MEAN
function can be made reentrant simply by changing the EXCLUSIVE keyword to RE-
ENTRANT. The necessary conditions for successful re-entrancy are described more fully
in the HAL/S Language Specification.

This chapter has defined the unit of compilation, and introduced the idea of a program
complex, consisting of several real-time processes. It has described how global code and data
can be made accessible to these processes, and how the adverse effects of “simultaneous™
access can be avoided. In Chapter Twelve, we will describe the HAL/S statements for creating
and controlling these processes and further discuss multi-programming concepts and their
application to aerospace systems.

Exercises

11.3A A bank runs several programs to modify savings and checking accounts in a multi-
programming environment. The procedure MOVE SAVE_TO _CHECK, used to
move money from a savings account to a checking account, is shared by all the pro-
grams, and looks like this:

MOVE_SAVE_TO_CHECK: PROCEDURE(ID, AMOUNT);

SAVINGSSID = SAVINGSSID--AMOUNT;
CHECKINGSID = CHECKINGSID+AMOUNT;

CLOSE;
SAVINGS and CHECKING are compool variables shared by all the programs.
a) What potential error is present in this system?

b) How can it be fixed?

11.3B The bank in exercise 11.3A awards interest periodically and records each interest
transaction for later printing on the customer’s statement. The shared procedure
AWARD_INTEREST performs this task:

AWARD _INTEREST: PROCEDURE(IDY,
DECLARF INTEREST INTEGER;
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.
.

.

INTEREST = SAVINGSSID INTEREST RATE;
SAVINGSSID = SAVINGSSID+INTEREST;
CALL LOG_INTEREST(ID, INTEREST);

CLOSE;
a) What potential error is present?

b) How can it be fixed?
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The SCHEDULE Statement 12-1

12.0 REAL-TIME STATEMENTS

Most aerospace applications have a set of timing constraints which comprise a major
facet of the entire problem definition. Meeting these constraints generally requires interac-
tions with an operating system.

Real-time operating systems for flight or process control applications can vary in many
ways. Nonetheless, certain capabilitics, such as invoking a code block at a specified fre-
quency, are almost always provided. By examining several operating systens, it is possible
to abstract a set of primitives (i.e. conceptual operating system functions) in which the vari-
ous facilities can be expressed. Then the real-time requirements of an application can be
described without referencing any particular operating system. The HAL/S statements de-
scribed in this chapter are such a set of primitives, through which real-time requirements can
be expressed in a machine-independe:it manner.

HAL/S suggests the point of view that real-time constraints are an intrinsic part of the
application; i.e. that timing is part of the algorithm rather than something to resolve *‘later”.
As a result, real-time statements are integral to the language, and allow the programmer to
express the entire algorithm directly and in one place.

Real-time statements isolate the programmer from operating system details in the same
way that arithimetic expressions isolate the programmer from details of machine instructions
and data formats. A standard syntax for real-time operating system interactions greatly en-
hances the portability of application programs. In particular, it allows flight programs to be
simulated on ground-based computers; since the timing interactions are expressed in HAL/S,
re-compiling is sufficient to translate the entire algorithm.

The mechanisms for communication among real-time processes were described in
Chapter Eleven; this chapter will discuss the set of HAL/S statements which control the
initiation, termination and synchronization of processes. These statemen:- are all execu-
table; each implementation includes some technique outside of the HAL/E language for
specifying one or more initial processes which can then use the real-time statements to
create and control additional processes.

12.1 THE SCHEDULE STATEMENT

The figure on the next page shows the use of SCHEDULE statements to create new
processes. As the syntax implies, these statements create cyclic processes which will receive
control from the operating system at the specified intervals. The intervals may be specified
oy any arithmetic expression in the REPEAT EVERY clause; the units are implementation
dependent but generally these values are expressed in seconds. In any case, the units of time
values throughout any particular implementation will be consistent. Seconds will be
assumed in the rest of this chapter. Hence, the three processes scheduled by STARTUP
would repeat at the rates of once, six times, and twenty times per second.
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12-2 Real-Time Statements

STARTUP:
FROGRAM;
GUIDANCE:
TASK;

CLOSE GUIDANCE:
HAVIGATION:
TASK;

CLOSE NAVIGATION;
CONTROL:
TASK

CLOSE CONTROL:
SCHEDULE NAVIGATION PRIORITY{60), REPEAT EVERY 1.0;
SCHEDULE GUIDANCE PRIORITY(70), REPEAT EVERY 1 / 6}
SCHEQULE CONTROL PRIORITY(80), REPEAT EVERY 1 / 203
CLOSE STARTUP;

IXIXTT O TXI N 32X O IIITX

HAL/S does not impose any restrictions on the periods of cyclic processes created in
this way; however, it may not be practical to provide complete generality in a flight oper-
ating system. Simplifications such as rounding all time values to the nearest millisecond are
to be expected in flight systems: The appropriate HAL/S User's Manual and any operating
system documentation should be consulted. It has become common practice, however, to
develop and test HAL/S software on large ground-based computers (host computers) before
executing on flight (target) equipment. These ground-based implementations generally do
not impose any restrictions on real-time statements other than those described in the Lan-
guage Specification, thus allowing a large range of operating system types to be simulated.
In this chapter, a complete implementation will be assumed, but the reader should not ex-
pect to find all of these capabilities in any particular flight operating system.

Suppose that the average execution time of the GUIDANCE, NAVIGATION and
CONTROL tasks are as shown in the table below.

Task Rate Average Time Total Time
GUIDANCE 6/sec. S0ms 3 sec.
NAVIGATION 1/sec. 100 ms .1 sec.
CONTROL 20/sec. 25 ms .S sec.

Total Time = 9 sec.
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The SCHEDULE Statement 12-3

Since these tasks together occupy only 9/10 of a second per second, it is clear that the speci-
fied rates are attainable. However, it would be extremely difficult to implement this struc-
ture using CALL and DO CASE statements as was done in Chapter Seven. The difficulty can
be seen by examining a time-line of these tasks’ execution:

NAVIGATION E E
wone |3 OO0 OO O O O O
oo | 000000000000000000000

1 second

The trouble is that no matter how the initiation of these processes is phased, a time will
occur when more than one process is due to execute. If only CALL statements were used, it
would be necessary to either tolerate a substantial jitter in the execution frequency of each
task, or to break each task into many small procedures which would be called in a very com-
plex sequence.

By the use of SCHEDULL statements, as shown in the example STARTUP, the timing
conflicts can bte automatically resolved. As we have already stated, the operating system can
re-allccate the central processor at any point in the execution of a process, subject to the re-
strictions resulting from update blocks and exclusive nrocedures. /f two processes are due
sir-ultaneously, the highest priority process receives control. The purpose of the priority
clause in the SCHEDULE statement is to allow the system to resolve conflicting requests
for the hardware resources. In the example, GUIDANCE becomes resdy while CONTROL
is executing about half the time. Since its priority is less than that of CONTROL,
GUIDANCE is stalled until CONTROL completes. Every time GUIDANCE executes,
CONTROL comes due in the middle; here again, the priorities govern the situation, and
GUIDANCE is stalled (interrupted) while CONTROL runs. When CONTROL completes,
GUIDANCE resumes at the point of interruption. As long as the shared data protection fea-
tures of Chapter Eleven are used, this system action has no impact on the coding of either
task, although some overhead is associated with the process swap.

Since CONTROL can interrupt either of the other two processes, the jitter in its period
of execution will be very small, Aside from the system overhead involved in swapping proc-
esses, delays in the execution of CONTROL can result only from swaiting the release of
focked data or an exclusive procedure by one of the other processes. GUIDANCE can be de-
layed by the unavailability of a shared resource or by the execution of CONTROL;
NAVIGATION can be interrupted by either of the others. Consequently, NAVIGATION -
will generally run in very short bursts spread out through the entire second.
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12-4 Real-Time Statements

The example actually consists of four processes: the three tasks and the STARTUP pro-
gram. The priority and other characteristics of STARTUP are detennined externaily, either
through a SCHEDULE statement in another compilation unit or by default during system
startup. Usually a HAL/S real-time executive will start a single program as s non-cyclic,
process; this program must then schedule all other programs and tasks. The priority of the
STARTUP program affects the sequence in which the tasks are initiated. If STARTUP iz at
priority fifty, when it schedules NAVIGATION at priority sixty, NAVIGATION becomes
the highest priority ready proccss and therefore receives control immediately. STARTUP
is stalled until NAVIGATION relinquishes the processor. This happens when NAVIGAT'ON
reaches its CLOSE statement; since it was scheduled to run only once per second, it enters
an intercycle wait and ceases to be a ready process. This makes STARTUP again the highest
priority ready process, 0 it receives control and executes the second SCHEDULE statement.
The same situation is repeated with GUIDANCE and CONTROL.

The effect of these SCHEDULE statements, then, seems very much like a set of CALL
statements. One major difference is that the GUIDANCE, NAVIGATION and CONTROL
tasks will continue to execute at the specified rates after STARYUP reaches its CLOSE
statement, even though STARTUP exccutes only once. Furthermore, eachk HAL/S real
time process has i1s own error environment. Any error handlers in STARTUP have no effect
whatsoever on the action taken if an error occurs in one of the tasks. Finally, the situation
would be different if STARTUP had a higher priority.

With STARTUP at pnority fifty, the following time-line describes the first few cycles:

se |B 8 &

cu::wxzm D [} 25 i I *

That is, Navigation and Guidance each compiete a full exccution uninterrupted before the
higher priority task(s) are scheduled. This may well simplify the system. If STARTUP was at
priority one hundred, however, the time-line would be compietely different:
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In this case, STARTUP executes cit three SCHEDULE statements before any other process
receives control; hence, the first cycie is not substantially different from any other.

When STARTUP reaches its CLOSE statement, it enters the wait state. This is similar to
an inter-cycle wait, but does not result from timing considerations. A program remains
active as long as any of its tasks are active, due to the possibility of shared data and 1tility
routines at the program level. It is said to be “waiting for dependent processes’’; the mem-
ory allocated to the program cannot be released. If the tasks are subsequently cancelled (i.c.
cease to cycle), the program completes as well; it is neither ready nor waiting, but simply
done and forgotten. In the terminology of the Language Specification, it is no longer “in the
process queues”.

The minimum form of the SCHEDULE statement contains only a process name and a
priority. as in:

SCHEDULE STARTUP PRIORITY(100);

If no repetition option is specified, the program or task executes only once. The REPEAT
EVERY specifies cyclic execution with a fixed interval between the beginnings of the
cycles. The REPEAT AFTER option is very similar, but the fixed interval is between the
end of one cycle and the start of the next, as illustrated in this figure.
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12-6 Rea!-Time Statements

The REPEAT AFTER form specifies the length of the inter<cycle period of waiting. if RE-
PEAT AFTER is specified, the average time between executions is the sum of DT and the
average execution time whereas it is simply DT in the case of REPEAT EVERY. The primary
advantage of the REPEAT AFTER form is that a cycle overlap error cannot occur. If proc.
ess A in the previous example executes more than DT seconds in 3 particular cycle, it wili
come due again before it completes. Thisresultsin a runtime crror for which no ON ERROR
handler can be written. Process B sbove can execute tor any length of time without an over-
lap, since the start of the next cycle is delayed until DT after the previous cycle completes.

The primary disadvantage of the REPEAT AFTER option is that it may make system
verification more difficult. Use of this option tends to make the time-line of the entire sys-
tem unsepeatable. If the outputs of a control system depend on the sequence in which vari-
ous processes are cxecuted, a huge number of runs may be required to show that no unac-
ceptable transients are introduced by timing fluctuations. On the other hand, if REPEAT
AFTER is used for less critical processes, the entire system may respond better to ovr “vad
conditions.

If REPEAT is specified without either AFTER or EVERY and a time:
SCHEDULE X PRIORITY(17), REPEAT.

the process is immediately restarted at the end of cach cycle. This is equivalent to " RE.
PEAT AFTER 0;”. This option is generally used for processes intended to use “left over”
time for self-test, etc., and for processes which issue WAIT statements. Use of the simple
REPEAT option is not substantia’lv different from coding an infinite !oop sround the task
body and scheduling it as a “one-snat”. The efiect of the CANCEL statement is different,
end under some implementations error recovery may differ as well.

The SCHEDULE statement has several other options in addition to the three REPEAT
forms. These uptions allow the start of a process to be delayed until » s7ecific condition is
met, and allow cancellation criteria to be specified at the time a process is scheduled. Both
begin and ¢nd conditions and s sepetition option may be used in s single SCHEDULE state-
ment, ss showni below.
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The SCHEDULLY Statement  12-7

This statement will cause the program or task P to be initiated with priority 49 at 5.4
seconds after the execution of the SCHEDULE statement. Subsequently, it will be ex-
ecuted® every .03 seconds for 94.6 seconds and then be terminated.

The IN and UNTIL opticns allow any arithmetic expression. This expression is a time
value in the same units as in the repeat options, generally seconds. The IN option requires an
interval of time whereas UNTIL expects an absolute time; this is the same as the normal
English usage of these words. Since the RUNTIME function returns the current value of the
system clock, “IN 5.4"" is equivalent to "AT RUNTIME+5.4", a form which is also accept-
able to the compiler.

All of the arithmetic expressions in a SCHEDULE statement are evaluated only once,
when the statement itself is executed. Subsequent changes to the variables used in these ex-
pressions do not affect the scheduled process.

The various scheduling options must be specified in the correct sequence, and only one
of a given type is allowed in a single statement. The sequence of phrases in a SCHEDULF
statement is:

1) SCHEDULE and a process name

2) An optional begin condition: IN, AT or ON,
3) A priority,

4) An optional REPEAT clause,

5) An optional end condition: UNTIL or WHILE.

The ON and WHILE conditions reference event variables, which will be described in Section
12.2. First a few special cases of the time options need mention.

Normally, the IN or AT time used in a schedule statement is in the future. If the speci-
fied time has already passed, the process is readied immediately. There is one exception: if
AT is used with the REPEAT EVERY option and the time has already passed, pitased sched
uling is performed. The first cxecution of the process occurs at the time given by the sum of
the “AT" time and the period (REPEAT EVERY delta) of the process. This aliows a *‘syn-
chronous™ real-time structure, wlach is further described in the Language Specification.
Phased scheduling tends to minimize the number of processes that are ready at any one
time.

Normally, the UNTIL time specificd is in the future. If it is already passed, then the
SCHEDULE statement has no effect. The UNTIL clause can never stop a process in mid-
execution. If the UNTIL time arrives while the process is executing, it is allowed to finish its
current cycle. The UNTIL and WHILE clauses can only stop a process before its first execu-
tion or during an inter-cycle wait. When the end condition specified in a SCHEDULE state-
ment is satisfied, the process is CANCELled rather than TERMINATEGJ, a distinction which
will be explained in Section 12.3,

*Assuming that its priority is sufficient to obtain necessary resoutces.
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Exercises

1Y1A Draw a time-ine for one second’s execution of the processes scheduled below. As-
sume that cach process executes for R0 ms per cycle.

SCHEDULE A PRIORITY(IOM, REPFAT FVERY 15,
SCHEDULE B PRIORITY(99), REPFAT LVERY 1/3:
SCHEDULE € PRIORITY(9R), REPFAT EVERY 1/2:

1218 Draw a tme-line for the processes in evervise 12.0A, but wath all occurrences of
FVERY changed to AFTER.

F2C Given two tasks, X and Y, both of which use one halt second per iteration, wrile
schedule statements that will run X continuously tor two seconds, then alternate X
and Y for two seconds, and then run Y half the time for two more seconds. Use only
two schedule statements,

12.2 EVENT VARIABLES

The three torms ol begin-condition in a SCHEDULF statement are:

IN “anthmetic expression””,
AT anthimetic expression™, and

ON “event expression™,

Two of these forms desenibe a begincondition in terms of time: the thind form, ON, lets
schedutling depend on conditions or occurrences which do not happen at a predetermiined
time. Suppose, for example, that the GUIDANCE, NAVIGATION and CONTROL tasks of
the previous example are used during lavnch of a spacecratl, but when orbit is achieved,
GUIDANCE and CONTROL are to be replaced with another task, FREFFALL. It the time
at which orbit will be reached is known in advance, this can be done with the AT and
UNTIL clauses already presented. Otherwise, it is appropriate to declare an event variable
to correspond to this occurence as in:

DECLARE ORBIT LVENT,

Then the desired transition can be specified in the SCHEDULE statements as whown in the
next example, When an event variable is signatled, as in:

SIGNAL ORBIT,

ll active event expressions which reference that event are evaluated. In thas case three active
event expressions reference ORBIT When the SIGNAL statement causes ORBU to become
TRUE, these expressions are all satisfied: GUIDANCE and CONTROL are cancelled via the
UNTIL clauses, and FREEFALL is started via the ON clause.

An active event expression is a hoolean combination of event variables used in a real-
time statement which has not yet been satistied. Event expressions are formed in the samy
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way as boolean expressions using the AND, OR, and NOT operators. However, ulf variables
in an event expression must be events. In the simplest case, an event expression consists of a
single event variable: e.g. “ORBIT" in the SCHEDULL statements above. A boolean com-
bination of event variables is only considered an event expression when it is used in one of
the real-time statements. An active event expression is one that has never evaluated to
TRUE since the containing real-time statement was executed. Once ORBIT is signalled, the
event expressions in the SCHEDULE statements are no longer a.tive. Signalling ORBIT
again will have no eifect unless additional real-time statements which reference it are exe-
cuted.

STARTUP:
FROGRAM;
CECLARE ORBIT EVENTS
GUIDANCE ®
TASK:

CLOSE GUIDANCE;
NAVIGATION:

TASK;

CLOSE NAVIGATION;
CONTPOL:
TASK;

CLOSE CONTROL;
FREEFALL:
TASK:

CLOSE FREEFALLS
SCHEDULE NAVIGATION PRIORITY{60), REPEAT EVERY 1.0;
SCHEDULE GUIDANCE PRICRITY(70), REFEAT EVERY 1 / 6 UNTIL ORBIT;
SCHEDULE CONTROL PRIORITY(80), REPEAT EVERY 1 / 20 UNTIL ORBIT;
SCHEDULE FREEFALL ON OR3IT PRIORITY(78), REPEAY EVERY 1 / 103
CLOSE STARTUP;

TXXZTXIX O IIXT O XXX N TIX O IXXxX

When an event expression is used in the UNTIL or WHILE clause of a SCHEDULE state-
ment, it can cause cancellation of a process. When used in the ON ¢lause of a SCHEDULE
statement or in 8 WAIT statement, it can cause a process to be readied or stalied. Event ex-
pressions are used only in SCHEDULE and WAIT statements, and always serve as a condi-
tion under which the state of some process is to be changed.

There are three types of event variables: latched and unlatche’ declared cvents, and
process events. All events have only two states, ON and OFF; the distinction between
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12:10 Real-Time Statements

latched and unlatched events is that an unlatched event does not retain its state. ORBIT is
an unlatched event since the LATCHED keyword was not specified in its declaration. It is
initially OFF or FALSE. When the SIGNAL statement is executed it becomes momentarily
TRUE, just long enough for all active event expressions which reference it to be evaluated.
SIGNALI is the only statement which czn affect the value of an unlatched event.

As stated above, an event expression can be a boolean combination of event variables.
Since an unlatched event is only true dunng the execution of a SIGNAL statement, and
only one event can be sigi.2lled at a time, the logical conjunction (A & B) of two unlatched
events will never be satisfied. This is one reason for using LATCHED events, as illustrated
below:

[
PROGRAM;
OECLARE ORBIT EVENT LATCMED IMITIAL(FALSE);
DECLARE ENSINE_OFF EVENT LATCHED INITIAL(FALSE);
GUIDANCE :
TASK}
CLOSE;

cu,:gﬂ:l'!ul! GUIDANCE PRIORITY(70), REPEAT EVERY 1 / 6 UNTIL ORBIT AND ENGINE_OFF;
’

FXTXIXXTXXTI

Here, GUIDANCE will continue to cycle until both ORBIT and ENGINE_OFF are true at
the same time. This can happen in several ways. The sequence:

SET ORBIT;
SET ENGINE_OFF;

will cause GUIDANCE to be cancelled. When a latched event variable is SET it remains true
until it is RESET. A latched event may also be SIGNALIled. In this case, the state of the
event is momentarily invc.ied for the duration of the SIGNAL statement, just as in an un-
latched event. Thus,

SET ORBIT;
SIGNAL ENGINE_OFF;

will also cause GUIDANCE to be cancelled, as will:

SET ENGINE_OFF,
SIGNAL ORBIT;

Howevcr, if one event is first signalled and then the other set, there will be no time at which
both arv true, and GUIDANCE will continue. The advantages of using unlarched events will
become clearer when the WAIT statement is introduced.
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Event Varables 12-11

The third type of event is a process event. These events are not declared by the program-
mer, but automatically defined to correspond to the state of each program or task. The
process event has the same name as the program or task, and is true from the time the proc-
ess is scheduled until it completes its last cycle. The process event of a cyclic process re-
mains true during the inter<ycle wait, and during any other stall or wait state. Process
event> canuot be SET, RESET or SIGNALled: they simply -eflect the state of the process of
the same name.

Process events can be used to solve a problem in the GUIDANCE and CONTROL to
FREEFALL transition of the previous example. Since a process cancelled :ia the UNTIL
clause of its SCHEDULE statement is allowed to finish its current cycle, FREEFALL will
start before the other tasks have finished if they are active at the time the event expression
becomes true. This difficulty is corrected in the following code.

STARTUP:
PROGRAM;
OECLARE ORBIT EVENT LATCHED;
GUIDANCE:
TASK:

CLOSE GUIDANCE;
NAVIGATION:
TASK;

CLOSE NAVIGATION;
COMTROL:
TASK;

CLOSE CONTROL;
FREEFALL:
TASK;

CLOSE FREEFALL:

SCHEDULE NAVIGATION PRIORITY(60), REPEAT EVERY 1.0;

SCHEDULE GUIDANCE PRICRITY(70), REPEAT EVERY 1 / 6 UNTIL ORBIY;

SCHEDULE CCNTROL PRICRITY(80), REPEAT EVERY 1 / 20 UNTIL ORBIT;

SCHEDULE FREEFALL ON (ORBIT & NOT GUIDANCE & NOT CONTROL) PRIORITY(78), REPEAT EVERY 1 / 10:
CLOSE STARTUP;

The FREEFALL process is initiated when ORBIT is true and both other tasks have com-
pleted their last cycles. In this case, ORBIT must be a latched event and it should be SET
rather than SIGNALled.

The effect of SET, RESET and SIGNAL on latched and unlatched events is summarized
in the table on the next page. As shown SET and RESET leave s latched event in the TRUE
or FALSE states, respectively. When a latched event is SIGNALLed, its state is momentarily
inverted. Unlatched events are always FALSE, except when SIGNAL makes them momen-
tarily TRUE,

DAV

—egn

B ety n

b b v e s




12:12 Real-Time Statements

Set Reset Signal

Take all event actions
unlatched event illegal illegal deper.ding on TRUE
state of <event var>

old 1. Set event state Take all event actions
value to TRUE depending on TRUE
latched is 2. Take all event . state of <event var>
- . no action
event FALSE | actions depending
on TRUE state of
<event var>
old I. Set cvent state | Take all event actions
value to FALSE depending on FALSE
latched is - 2. Take all event | State of <event var>
no action .
event TRUE actions depending
on FALSE state
of <event var>

Events can also be tested in non-real-time statements; e.g
IF ORBIT THEN DO;

Boolcans and cvents may be freely mixed in boolean expressions, However, when used in
any statement other than SCHEDULE or WAIT, an unlatched event is always false.

The SCHEDULE statements allow begin and end conditions to be specified in terms of
either time or event expressions, but the repetition option can only be specified in terms of
a constant interval of time. The WAIT statement allows a piece of code to execute at irregu-
lar intervals.

Suppose a process is required to execute whenever ORBIT is false and ENGINE _OFF is
true. The schedule statement can be used to initiate a process the first time this combination
is true, as in:

SCHEDULE RE_IGNITE ON NOT ORBIT
AND ENGINE _OFF PRIORITY(999);

A convenient means of allowing this process to execute every iime the event expression is
true is shown on the next page.

. BERTIPEN
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p:
PROGRAM;
DECLARE EVENT,
ENGINE_OFF,
OPBIT LATCHED;
SCHEDULE RE_IGNITE FRICRITY(999);
RE_IGNITE:
TASK;
DO MMILE TRUE;
WAIT FOR ENGINE_OFF L ~ORBIT;

END;
CLOSE RE_IGNITE;
CLOSE P;

XXX OO0 IIXIIIXIIIIX

When the WAIT statement is executed, if the event expression is true, execution continues
at the next statement. If the event ¢xpression is false when the WAIT statement is executed,
the process is stalled until the expression becomes true as a result of event variable changes
by other processes. If the event expression in a WAIT statement is not immediately satisfied,
it is put into the pool of active event expressions; the process containing the WAIT state-
ment is stalled (taken out of the READY state) and the highest priority ready process re-
ceives control. The process issuing the WAIT can only continue when the specified condi-
tion is satisfied.

Suppose that ORBIT and ENGINE _OFF are both latched events. If they are SET and
RESET from some process other than RE_IGNITE, it is possible that RE_IGNITE will exe-
cute too many times. Since it is of such a high priority, RE_IGNITE may finish processing
and re-execute the WAIT statement before the other process has a chance to RESET
ENGINE_OFF. In fact, if RE_IGNITE is the highest priority process and contains no other
WAIT statement, it will continue to loop to the exclusion of every other process. If the RE-
SET statement can be pi- " in RE_IGNITE right after the WAIT statement the problem is
solved, but the situatiol Id be avoided altogether by using a SIGNAL statement instead 3
of SET. Since SIGNAL leaves an event in the true state just long enough for all active event
expressions to be evaluated, there is no possibility that RE_IGNITE will re-issue the WAIT
statement while the event is still true. The SIGNAL statement is generally used when an
event is expected to change its state repeatedly, as there is no need to RESET* it in prepara-
tion for the next use. Note, however, that if the process which is to wait for the event has
not already executed its WAIT statement, the SIGNAL has no effect. ;

i TR s e 40 B

*Signal momentarily inverts the state of a lstched event, If a process waits for the false state, SIGNAL
avoids the need to SET the event before the next cycle.
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12-14 Real-Time Statements

Consider the two communicating processes below:

P:
PROGRAM;
DECLARE DO_SOMETHING EVENT;
DECLARE DONE EVENT LATCHED INITIAL(ORF);
SCHEDULE T PRICRITY(S0);
SICMAL DO_SOMETHING;
WAIT FOR DONE;
T
TASK;
WAIT FOR DO_SOMETNING;
SET OONE;
CLOSE T:
CLOSE P;

TXIXXIXIXIIIITITX

In this example, if the priority of P is greater than 50, neither process will ever complete. If
the priority of P is less than 50, T will execute its WAIT statement before DO_SOME-
THING is signalled, and both processes will complete. If P is the higher priority process, it
must pause before signalling DO_SOMETHING to give T a chance to execute its WAIT
statement. This could be done by adding:

WAIT .1;

just before the SIGNAL statement,

Exercises

12.2A Why does the SCHEDULE statement have both AT and ON clauses?

4y
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12.2B In the program segment below, at which of the points A-D is the event expression Q

12.2C

122D

active?

DEéLARE Q EVENT LATCHED INITIAL(OFF);

SCH.EDULE TASK1 ON Q PRIORITY(37);

SIGNAL Q:

SET Q;

Let X be a latched cvent which is initially OFF. How is SIGNAL X; different from
the sequence SET X; RESET X;?

Redo problem 12,1C with the two transitions based on events: assume that un-
latched events, TRANI and TRAN2 are signalled at appropriate times by another
process,
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12-16 Real-Tine Stotements

12.2F Is a latched or unlatched event more appropriate in each of the following situations:
3)  As the single operand of an ON clause.
b) As part of a complex event expression.
¢) Ina boolean expression.

d) In the RESET statement.

o

)} In a WAIT statement inside a loop.

12.2F Write code that will cause the state of one event variable, COMPL, to always be the
inverse of another event, MASTER, which is set and reset by some other code. Do
not examine the state of MASTER more often than necessary

12.3 OTHER REAL-TIME STATEMENTS

The SCHEDULE statement creates a process of some priority and possibly with some
repetition rate. Begin and end conditions can be specified in terms of either time or event
variables. These event variables may be SET, RESET and SIGNALled by other processes.
The WAIT statement allows a process to voluntarily release control pending some future
condition. This condition, like those in the SCHEDULE statement, may be either a combin-
ation of event variables or the passage of time.

In addition to the time option of the WAIT statement, this section presents the CAN-.
CEL and TERMINATE statements, which allow 2 process to discontinue itself or some
other process, and the UPDATE PRIORITY statement, which is used to modify the priority
of a process which has already been scheduled.

The WAIT statement has three forms:

WAIT FOR ‘“‘event expression®;
WAIT “delta time™; and
WAIT UNTIL “time™,;

The etfect of the statement is the same in all cases: If the specified condition is already true,
execution continues, otherwise, the process is stalled until the condition becomes true.

As in the SCHEDULE statement, the expressions “deita time' and “time’ may be any
arithmetic expression; both are in the sane umts as time values in other real-time state-
ments. The two forms distinguish between a particular time, and an interval of time, which
is the same distinction as between the IN and AT options of the SCHEDULE statement. As

before,
WAIT .1,

is equivalent to:

WAIT UNTIL RUNTIME + .};
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These forms of the WAIT statement are generally used in *'sequencing’ applications, for in-
stance to fire a vehick control jet for a given duration or to wait between commands to
some slow moving mechanical device. They are also useful in testing, to generate a scenario
of simulated inputs as a function of time.

MNote that the arithmetic expressions in the time-oriented WAIT statements are evaluated
only once, when the WAIT statement is executed. The expression “RUNTIME + .1" does
not keep sliding into the future, but is converted to a scalar value when the WAIT statement
is executed. It is only event expressions that are repeatedly evaluated by the system.

A further example of the WAIT statement, is shown below. Here, the acceleration
of a vehicle is con.rolled to get from HERE to THERE in minimum time by accelerat-
ing halfway and deaccelerating halfway. Steeiing is ignored, as is any initial velocity.

[ 4]
PROGRAN;
DECLARE VECTCR,
HERE., TNERE:
OECLARE MAX_THRUST CONSTANT(1234),
VEH_MASS CONSTANT(3678);
DECLARE SCALAR,
Ay 3, T}
CECLARE BOOLEAN,
ACC_CrD, DEcC_Cvo:
A B MAX_THRUST / VEN_MASS:

9 v ABVALIMERE - TNERE) / 23
T ¥ $3RT(2Z A 2D

ACE_CHD = ON3
WATT T

ACC;W L 4 21

DECE_CHO = oM}
HALIT T3

pecc_om = arr;
CLOSE P}

IIMIIMIMIIMIIMIIIIITIIIXIX

In this example, “WAIT T;” introduces a delay of T seconds between setting ACC_CMD
on, and back off.

The WAIT statement temporarily deactivates a process; a process can also be perma-
nently deactivated. A non-cyclic process (no REPEAT clause in the SCHEDULE statement)
terminates by exccuting its CLOSE statement, by csusing a fatal runtime error, or as a result
of the TERMINATE statement. A cyclic process can cease executing as a result of the
WHILE or UNTIL clause used when it was scheduled, the occurrence of a fatal error, or the
execution of a CANCEL or TERMINATE statement.

The CANCEL snd TERMINATE statements are similar in form, each consisting of a
keyword (CANCEL or TERMINATE) followed by a list of process names, for example:

CANCEL GUIDANCE;
TERMINATE STARTUP;
CANCEL NAVIGATION, CONTROL, P, T;
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12-18 Real-Time Statements

The TERMINATE statement causes immediate, abrupt cessation of the listed processes.
Since it may stop a process at any point in its exccution, its use is strongly discouraged. The
HAL/S Language Specification imposes additional rules on the use of TERMINATE. The
only use of TERMINATE which is generally considered acceptable is:

TERMINATE:

When no list of processes is supplied. self-termination is impli 4. This form of the TERMI-
NATE statement can verve as a3 “‘super return” stawcinent at the PROGRAM or TASK level.
Since the process “kriows” its own state, this form is relatively safe. When other processes
are terminated, it is important to consider all possible points at which they might be exe-
cuting to ensure safety.

The CANCEL statzment allows an orderly shut-down of the specified processes. Like
the WHILE and UNTIL clauses ¢ the SCHEDULE statement. CANCEL can only stop a
process before lis first cycle or during the intercycle wait. This allows processes to be
stopped without the risk of leaving partially updated results.

Since a cancelled process is allowed to finish its current cycle, the CANCEL statement
may not have immediate effect. Process events can be used to key on the completion of the
last cycle before scheduling a “replacement” process, as shown below:

CANCEL X, Y, Z;
WAIT FOR X & 1Y & TZ;
SCHEDULE XYZ_NEW PRIORITY(10), REPEAT;

Exercises

12.3A Surround the statement “WRITE(6) RUNTIME;" with other statuments so that the
values 1/10, 1/8, 1/6, 1/4, 1/2, and 1 will be sent to channel 6. Use no other 1/O
statements. Do not worry about numeric accuracy.

12.3B Given:

P. PROGRAM;
DO WHILE TRUE;
{*something®/
END;
CLOSE;

SCHEDULE P PRIORITY(100);
What does "CANCEL P;” do” Ho. should this be done?

i i s et Soiab oKl
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End of Chapter Problems
Pa.i of the specification of the flight software for the XYZ aircraft might read as
follows:
Category Rate Functions
A Ra input processing
clevon commands
telemetry
B VIR, rudder commands
guidance
C 1/4 R A flight control gains
D 1/8 R A navigation display
updates

The software functions are divided into four categories as shown. The category
A software is 1o be executed at the highest possible rate consistent with the through-
put of the machine and the tota} workload. The category B software shall execute
one-half as frequently as category A; the rate of category C shall be half that of

category B, and the rate of category D shall be one-half that of category C (i.e. one-
cighth the rate of category A).”

Implement the abo = example via the real-time statements. Explain your choice
of priorities. Fix rate A at one-tenth.

Re-do the problem under the original “as fast as possible” groundrule.
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13.0 SYSTEM PROGRAMMING AIDS

The information presented in earlier chapters applies equally well to any HAL/S com-
piler. Except for numenc precision, the examples shown will produce the same results under
any complete implementation of the HAL/S language. This tran.fermability was one of the
major design goals «_ ¢ the language. it decreases the dependence on the availability of flight
hardware and encou; ages the re-use of debugged software.

In order 10 provide this degree of machine-independence, the language isolates the user
from details of the underlying hardware; e.g., the number of bits in a sca. ir. The arithmetic
data types, Integer, Scalar, Vector and Matrix correspond to mathematical abstractions. For
most users, the mapping of these data types into the dats formats supported by a siven
computer is of no concem. The operations that can be perfoimed on these data types are
defined in a way that is completely independent of any computer architeciure. T : charsvter
string, boolean, and event t;'pes also are defined abstractly. users do not normally need to
know how much memory is occupied by a boolean or what character code (ASCI), EBCDIC,
etc.) is used intemally. Since these low level decisions sre made in the compiler, HAL/S
code is ususliy machine-independent.

While most flight code implements algorithms that are defined in machine-independent
mathematical or logical terms, small portions of many projects are specified in terms much
closer to the computer in use. Examples of this low ievel code are formatting sensor data,
handiing interrupts, managing real-time clocks, commanding special purpose avionics, etc.
These functions are intrinsically machine-dependent; their algorithms are designcl in terms
of hardware capabilities and concepts. Thus, there is little chance of sharing this type of
software between different projects. Transferrability of “systems programs™ is not 8 ptac-
tical goal, given the diversity of flight hardware.

Even though system software is generally specific 1o a given computer, the other advan-
tages of high order languages stil! spply. Also, the use of a single language for both sppiica-
tion and system programs tends to sunplify interfaces, documentation and training. Hence,
HAL/S provides some features for writin; system software, including the use of pointers
and low-level bit manipulation.

These features are most frequenily used in software that is intrinsically non-transfer-
rable. The restriction of bit manipulation to the BIT dats tyye, and similar “onstraints on
addresses, seps ate the posibly machine-dependent systems programs from applica’ n«
code.

13.1 BIT STRINGS

A bit string is a senes of binary digits. Each digit or bit behaves like a boolesn; the
forms, BOOLEAN and BIT(1), are comple:el interchangeable. A bit string of length four
can be created via:

DECLARE FLAGS BIT(4);
Like vectors, character string, and other aggregate data types, bit strings may be sub-

scripted to seloct single components or partitions. The first, leftmost, or most significant bit
of FLAGS is denoted FLAGSS |. The last two bits woulo be referenced ss FLAGSS(2 AT 3).
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The catenation operater (1 1) also applies, though bit strings differ from character strings in
that bit strings are of fixed length, The AND, OR and NOT operators can be applied to
entire strings as well as their boolean components.

The lenath of a bit g must be less than an implementation-dependent limit. This
limit generally cquals the maximum number of bits that can be loaded into a general pur-
pose accumulator or register on the {arget machine.

Operations on single bit components of a bit string are generally slower than correspond-
ing operations on BOOLEANSs or entire bit strings. The machine mstructions to perform
these operations also tend to occupy more space.*

Because of the inefficiency of operating on a component of a bit string while leaving the
other bits alone. bit strings should not routinely be used to pack the individual booleans of a
program into a single word. One type of situation in which bit strings can be used effectively
is illustrated below.

L4} DECLARE I INTEGER;

L} DECLARE 8 BIT(8);

n DECLARE BOOLEAN,

4} Cl, €2, C3, C4, CS. C6, C7, CO;
c

L] 00 WHILE ON;

] 00 FOR I = 1 TO 100;
€ .

L} IF B = HEX'00* THEN
L] 003

c .

L] END;

H ELSE

M 00;

c

" END;

n IND;

€ .

M IF C1 THEN

3 .

M B = ON;

S 1

E .

" IF C2 THEN

€ .

" 8 = ONj

s 2

< .

c .

c .

*This is because most memory units are designed to transfer many bits (a byte or word) to or from the CPU
in one operation. Modifying a single bit generally requires the use of logical or shifting instructions to
preserve the state of adjacent bits.
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Bit Strings  13-3

IF €8 THEN

T uxme

In this code, eight booleans are packed in a bit string called B. This mukes the statements,
BS1=ON, B$2=ON, etc., less efficient than references to the individual booleans, C1, C2,
ete. However, the statement:

IF B = HEX'00'THEN DO;
is much more efficient than:

IF NOT ((;l 1C2IC3IIC41CS1C61CTICR THEN

DO;

Since this statement is executed much more frequently than the individual assignment. , the
savings from making a simpler test more than offsets the cost of the component assignments.
Thus, one application of bit strings is to collect booleans for testing as a group.

The axample above tests whether all eight bits are false. Other compound conditions can

be tested via the AND and OR operators. For instance, the tollowing statement tests for the
odd-numbered bits equal to zero:

IF (B & BIN'1010101010") = HEX'00' THEN
DO;
The test that bits | and 3 are on and 2 and § are ofY can be coded as:

IF (B & BIN'11101000") = BIN'10100000' THEN
DO;
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When booleans are collected in a bit string, it is still possible to give symbaolic names to
individual components v.. REPLACE statements, as in:

REPLACE MEANINGFUL NAME BY “B$3™;

The only comparisons that may be made between bit strings are equality and non-
equality (= and 71 =), As with arrays, the components are compared in pairs; two bit strings
are equal if all pairs match, and unequal if any pair mismatches. If two bit strings of unequal
lengths are compared, the shortest is padded on the left with binary 2eros before the
comparison.

This left padding also occurs prior to logical operations on bit strings of uncqual lengths.
The following assignment statements all have the effect of setting BS6 to ON while leaving
the other bits alone.

hﬁ = ON;

B = B OR HEX'04";
B = B OR HEXW"

B = B OR BIN'I100;

Provided that the implementation dependent limit on bit string lengths is not less than
twenty:

B = B OR HEX'00004'

will also produce the same results: a copy of B is padded to length twelve before it is ORed
with the HEX'004", and the result is truncated at the left (the most significant four bits are
removed) before it is stored back into B.

Partitions of bit strings may be used in the same ways as entire strings, ¢.g.:

IF B = OCT *I7° THEN DO;
1 TO 4

The width of every bit partition must be known at compile-time. This means that in the
form BS(X AT Y), X must be an arithmetic expression composed solely of literals, CON-
STANTSs, REPLACE names and the arithmetic operators. In the form B$(X TO Y), doth X
and Y must be computable at compile-time, Characrer strings are the only data type for
which variable-width partition subscripting is allowed.

As we have stated, bit strings should not be routinely used to pack booleans. The over-
head of referencing the boolean components gonerally outweighs the savings of compressing
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them. In the first example, a bit string was appropriate since the entire string was referenced
more often that its components.

It may also be appropriate to use bit strings to pack a rable of booleans. Since there are
generally fewer HAL/S statements which reference a table than entries in the table, it is
possible to save memory (at the expense of execution time) by compressing the table while
expanding each reference. For instance, in the table of 1000 booleans.

DECLARE INFO ARRAY(1000) BOOLEAN;
each array element can be easily referenced as in:

IF INFOS$ (1:) THEN DO:

but the table itself will occupy a lot of memory. Each boolean uses a whole byte, word, or
other addressable unit. To save some storage, this table could be packed as shown below:

DECLARE INFO ARRAY(1 ¢ 1000 / 16) BIT{16);
TESY:
FUNCTION(I) BOOLEAN;

OECLARE I INTEGER:

DECLARE INTEGER,

HORD, BITNUM;
NOPD = DIVII, 16)5
BITNUM = I - 16 KORD;

RETURN INFO ;
WORD+1:81TNUNeY

X UWIEIMIIIXIZIXIIX

CLOSE TEST;

Now the value of entry number I in the table can be referenced as TEST(I). This will be a
less efficient reference, but the table size has been greatly reduced.

This example assumes that the computer on which the code executes can address
memory by the 16-bit unit. If not, this code could be very much less efficient. Thus, this
example is not machine-independent. It would still compile and produce the correct results
on, say, a 24-bit machine, but to achieve the same efficient use of memory would require
changing the four occurrences of 16 to 24. Thus, one reason why programs containing bit
strings tend to be less transferrable is that bit strings are sometimes used to control the
packing of information in “words” of memory.

The expression INFOS(WORD: BITNUM) contains both array and component sub-
scripts. As before, many combinations of simple and partition, component, array, and
structure subscripts are allowed.
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One of the most common uses of bit strings in aerospace applications is for formatting
senscr and display data. For example, a sensor might produce a valuc in “packed decimal”
format: six four-bit fieids, each containing a number from 0 to 9 (BIN'0000" to BIN‘1001"),
packed in a 24-bit word. This could be converted to a simple integer by the following code:

DECLARE INPUT BIT(24);
DECLARE OUTPUT INTEGER INITIALLO);
0O FOR I = 1 TO 21 BY 4;

OUTPUT = 10 OUTPUT o lN‘TEGEI(lNéUT 1
QAT I

X VUImIITx

€N

Here we see that the INTEGER shaping function will accept a bit string as its operand.
The effect is merely to treat the string as a binary number rather than a series of booleans.

Conversely, the BIT function allows an integer to be treated as a bit string. The length
of the string returned is always equal to the implementation-dependent maximum bit
length. The code below assumes that the maximum is 16:

DECLARE I INTEGER:
B BITI16);

READCS) I3

8 = BITUIN

IF 8 THN
1

WRITE(S) ‘VALUE OF T WAS NEGATIVE®:
IF B THEN
»

X WIEMIT GXMIMIIX

HRITE(6) 'VALUE OF I HAS 0DD'}

This example produces correct results only on a 16-bit 2's complement or sign-magnitude
computer. Here the machine dependence results from both the string length of 16 and the
assumptions made about the interpretation of the first and last bits of an INTEGER.

i
i
!
H
;

P ] ]

wWoet .

.



b o

CaE e

N e T ¥ DA ATPYIRTRE o O GO - T O B IR

E:
4

Bit Serings  13-7

Conversions between bit and integer types use the BIT and INTEGER functions. The
BIT function - ™ ale > aceept a scalar argument, and the SCALAR function will accept a
bit argument. Howevcr, an intermediate conversion to integer occurs in scalar-to-bit and
bit-to-scalar conversions. Thus, BIT(3.5) = BIN'0000000000000100°, and SCALAR(BIN
‘0100°) = 4.0. BIT of a scalar between zero and one-haif generates a string of binary zeros. <

3

P

The value retumned by the BIT function is always of the maximum legal length for bit
strings, as defined for the compiler version in use. This fact must be considered when the
BIT function itself is subscripted. The last four bits of an integer, I, can be referenced as

o | Rl

BITS(4 AT #--3) (D)

but the expression

BITS(1 TO 4) (D

may or may not select the first four bits ~{ ], If the number of bits in the representation of
an integer is less than the bit string length limit, the BIT function will left-pad the bit
pattern of I with binary zeros up to the limit. The subscript applied to a BIT function
selects bits from the maximum-length resuit of the conversion, rather than from the original
operand, so BITS(]1 TO 4) (I) may pick out padding instead of data.

The CHARACTER function can convert a bit string to its binary, octal, decimal, or hex-
adecimal character representation. This is specified via a radix, which is written as a sub-
script: for example: |

DECLARE B BIT(8):

B = BIT(25);

WRITE(S) CHARACTER  (B)3
HEx

WRITE(G) CHARACTER (B
soEC

®)
MIITECS) CHARACTER, (8}

MRITE(S) CHARACTER 11
BIN

Xm BXIM FXM GI™ WIMIMI

WITECS) BE

oy
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would produge:

Q9
os
310
*00011001°
*0001t001°

The BIT function can convert a character string back to a bit string. The radix s sup-
phiea diciw oo wells every character in the string must be o digit in the valid range tor the
speaitied radix. BITS(@HEX) (127 i BINTTOOI10", BITS(OCTY (12'Y 18 BIN*1010°, and
BITS(«'BIN) ("1 2" would result in a runtime error. Note that conveisiens hetween character
and bit do not depend on the codes used to represent numerals within character strngs.

Another tunction, SUBBIT. allows sny data type to be referenced, assigned., and sub-
scnipted us if it were a bt stning. SUBBIT obtains the intemnal representation of a variable
with no modifications at all. Since these representations of HAL,S data type. vary from
con.puter to computer, progrums which use SUBBIT can not be muchineandependent.

The SUBBIT function is used in the code below to convert a character string containing
decimal digits to the packed decimal torm discussed earlier. This routine assumes that the
digits are represented in the EBCDIC character code. In this code (which is not used in ell
implementation.) the decimal digits 0 9 are represented by the bmary codes HEX'FQ
through HEX'F9',

DECLARE € CHARACTER () INITIALC1234):
DFCLARE B BIT(16) INITLALLHEX 0000,
DO FOR TEMPORARY | = 1 TO 4.
B =B |{ SUBBIT $5 TO 8XCSh:
END;

The expression SUBBITS(S TO S)CSD selects bits five through eight ot the binary rep-
resentation of she Ith character of C.SUBBIT can also be used to modify a variable as it
it were a bit string. The SUBBIT function is described further in the HAL/S language
specification

As a final cxample of bit strings, consider the following problem: A set of three redun-
dant sensors produce an ARRAY(3) BIT(16), where each sensor contributes one array
element containiry four fields as shown below:

nl n2 n3 validity bit

Y 1 1]

-

| | I I T T T T Y T U e |

(|
34 5 6 78 910111213141516

1
1 2
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The problem is to produce a fourth word in the same format which contains average values.
The five bit fields will be treated as unsigned integral numbers: the validity bit in the average
will be true if and only if all three input validity bits are true.

The data can be declared as:

DECLARE DATA ARRAY(3) BIT(16).
DECLARE AVERAGE BIT(16):

and the computation can be done in a single statement:

wIxm

AVERAGE = 81T T !unsu(loinl IR TN 344 {SUMLINTEGIP( [0ATA)
S AT ®-3 “:1 108 § AT ®-4 #:8 AT

IR IR S T SUMLINTEGERLIDATA) Vo2 3) 11 DATA  AND DATA A DATA
. sars wsaAT 1 1 e 36

wIxm

Note that the bits in the di»gram were numbered from one to sixteen, starting at the left
(or most significant bit). HAL/S always numbers bits in this way. regardless of any conven-
tions that may be used in hurdware documentation.

The expression BIT$(5 AT #-4) (. . .) selects the last five bits of its operand. Since the
length of the string retumed by the BIT function is implementation dependent, the use of
“#-4" instead of **12" or 28", etc., is generally preferred.

DATAS(*: 1 TO 5) is an ARRAY(3) BIT(5); this expression selects a bit partition from
each array element. Thus, the INTEGER function is being presented with an array of “NI™
fields.

This example also shows the use of the catenation operatur on bit strings, which
operate: in the same way as on character strings.

In this section, two major uses of bit strings have been presented. First, bit strings were
used to collect booleans into a single word so that a complex boolean expression could be
reduced to a simple comparison; the examples would work under any HAL/S implementa-
tion. The other major use of bit strings is for manipulating quantities of less than one
addressability atom; bit subscripts used to pick apart a word of memory. This allows explicit
user control over the packing of data, and provides a facility for reformatting avionics 1/0
data. In this case, such considerations as the word size of the target machine and the internal
representations of HAL/S data become important; hence, there is a degree of implementa-
tion-dependence in the use of bit strings.
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13.1A

13.1B

13.1¢

13.1D

Exercises
Given,
DECLARE FLAGS BIT(12);

write expressions that test for each of the following conditions without using
subscipts:

a) bits 1 and 2 on,

b) even numbered bits off,

c) first six bits off or last six on,

d) bits 1.3, 5, 11 on, .. hers off, and

e) bits |,3,5, 11 or, 2, 12 off, others irrelevant.

Fill in the following function so it agrees with the comment:

FLIP: FUNCTION(B) BIT(12);
DECLARE B BIT(12);
C Return string of bits in reverse order,
C i.e., FLIP(HEX'00!") should be HEX'800".
CLOSE FLIP;

Six bits can represent an integer value between zero and 63. If a table of 200 such
values were to be stored in a computer with a 24-bit word, it would be advantageous
to pack four values per word. Write a procedure,

SET_BITS: PROCEDURE(ENTRY VALUE);,

which can be called to set one of the 200 6-bit entries to value, and a function,
GET_BITS: FUNCTION(ENTRY) INTEGER,

which retums the value of one entry. Use the declasation:

DECLARE TABLE ARRAY(50) BIT(24);

A common format for floating point numbers consists of a sign bit, followed by
seven exponent bits, and 24 mantissa bits. The value of the number is:

% mantissa x ] 66xponent —64

A non-zero number is said to be “normalized” if the first four bits of the mantissa
are not all zero. Write a procedure which interprets its BIT(32) argument as a
floating point number, and retums a BIT(32) which has the same floating point
value as the input, but is normalized. If the input mantissa is 0, then return true
zero (i.e., all bits = 0). When would such a routine be useful?
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13.1E Re-do the packed decimal to integer conversion example in the text using only one
executable statement.

13.1F Re-do the problem above without any arithmetic operators. Hint: Use character
operations.

13.2 NAME VARIABLES

Name variables are pointers or addresses; they allow data to be referenced indirectly.
Name variables are sometimes called *‘pointers-to”, since cach name variable can point only
at variables of a given data type. The type of the data pointed to is specified in the declara-
tion of the name variable itself.

The most prevalent use of pointers in general is to pass the address of a data aggregate
(such as MATRIX) to a subroutine. In HAL/S, this is done implicitly via ASSIGN param-
eters; hence, the need for name variables in application programs is almost eliminated. In
system programs, name variables may be used for efficiency in maintaining linked lists and
queues, for buffer control and storage management, and for interfaces to non-HAL/S code
or 1/O hardware (e.g., a DMA channel).

Another common use of name variables is to avoid a repeated structure subscript opera-
tion. Suppose an inertisl sensor produces data in the format indicated below:

STRUCTURE IMU_DATA:
! DELTA_V ARRAY(3) INTEGER DOUBLE,
1 ATTITUDE ARRAY(3) INTEGER,
1 STATUS BIT(16);

There are three of these sensors:
DECLARE IMU_ INPT IMU_DATA-STRUCTURE(3);

A low rate process is to select the best of the three copies of IMU data; the entire structure
is to be read and the selected copy processed at a higher rate. One way* to pass the selection
information between the processes is as a structure subscript. An integer,

DECLARE BEST INTEGER;

could be located in a compool visible to both processes. It would be assigned to |, 2 or 3 at
the low rate, and the high rate would have computations involving IMU_INPT$(BEST;). No
name variables are used so far, but this solution will work. Individual components of the
selected structure can be referenced a8 in:

PITCH_ANGLE = SCALAR(IMU_INPT.ATTITUDEggT 1 )i

Swithout using name variables
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13-12 System Programming Aids

s Every reference to the selected structure copy includes the subscripting operation. This

’ conceptually involves adding the base address of the structure to the product of the struc-
ture width and the value of BEST. Multiplication is relatively slow on most computers. It
would generally be more efficient to compute the address of the BEST copy of IMU_ INPT
only once and reference it directly through this saved address. Both *‘indexing” and “in-
direction” are performed in a variety of ways on different computers, but when the index
requires multiplication, in this case by the width of ten integers, indirection is quicker. This
is not to say that it is always preferred; sorne of the risks of using name variables will be
discussed later.

Before giving the name variable solution, we note that the address can be computed and
saved by adding an additional procedure:

[ 4 .
) ] CALL XTRA ASSIGN( IMU_INPT "
S BEST:
n | XTRA:
M | PRCCEDURE ASSIGNIBEST IMU);
n DECLARE BEST_YMU IMU_DATA-STRUCTURE:
4 vee
L PITCH_ANGLE = SCALANI!ST_XN.ATT!YW!‘H
)
4 “ee
N | CLOSE XTRAS

Here the structure subscript is eliminated throughout the XTRA code block, since HAL/S
ASSIGN parameters are a case of “call by reference” rather than “call by value”; the
address of the argument is passed to the procedure. Name variables allow the sane type of
indirect reference without the overhead of calling an extra procedure. This is shown below:

- s
- ’ " STRUCTURE THU_DATA!
P " 3 DELTALV ARRAY(3) INTESER DOUSLE:
" 3 ATTITUDE ARRAY(3) INTEGIR,
" 3 STATUS BITIe N
n|  oreLaRt mmu_tReT I OATA-STRUCTUREL3)
n| oecuant sesT meeen;
n|  orcLant pIven_ansit scaiam
) n|  DECLARE BEST_IMU NAME TWU_DATA-STRUCTURES
: ;
: ]
¥
- i
"
v
W F “1
o
[ 4
Le
¥
!'
A
&
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LON_RATE:
TAS:
DICLARE BEST INTEGEN:
CAvL TBD ASSIGNIBEST);
* *
NAME(BEST_IMU) 2 NAME(IMU_INPT i
eest;

AZMIXIZ

CLOSE LOW_RATE;

NI_RATE:
TASK}

PITCH_ANGLE = SCALAR(BEST_IMU.ATTITWOE )3
1

T O a4 O XX 6 32

CLOSE NI_RATE;

This program i1s much the same as before, In particular, the HI RATE task 1s the same as
when BEST IMU was an assign parameter, except that the XTRA procedure is gone.

The name variable. BEST IMU, occurs three times in the program above. Fust 1s the
declaration: a vanable s specfind to be a name by placing the keyword NAMFE before
the duta type The second is when 1t appears as an operand o the NAMFE function in the
LOW_RATEF task Inthis context (and only in this context) the name s treated as a pointer.
Here 1t is set to the address of the best copy of IMU! INPT. The only way to “re-point’ the
name variable BFST IMU 1s by executing a statement of the form:

NAME(BEST IMU) = NAME(. . .);

The only way to reference 4 name variable's pointer value at all is by use of the NAME
function. Normally, BE®™ "MU 1s of type IMU DATA-STRUCTURE. it may be used any-
where that a non-name voiaable of type IMU DATA-STRUCTUREF is allowed. In 3 normal
context, outnde the name function, a name variahle serves as an alias for data of some other
type, hence the terminology NAMF instead of “pointer™. This is not at all the same as the
use of a REPLACE macro as in:

REPLACE BEST IMU BY “IMU_INPTS (BEST)).
because the replace macro results in the subscnpt operation performed every time. In the
case of name variables, changes to the value of BEST only affect which data is referenced by
BEST IMU when the

NAME(BEST IMU) = NAME(IMU INPTS (BEST;);

name assignment is execuled.
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Name variables may be of almost any data type, though the most useful is structure. The
types of data to which names cannot point are those which require more than a simple
address to describe. These are the same types that are disallowed as assign parameten; ex-
amples include bit partitions, matrix columns, efc

A name variable can only refer 1o data of exactiy the same type as specified in its decla-
ration. This means that il of the type attributes mus: match, including precision, arrayness,
structure hierarchy, and so on. The INITIAL attribute is an exception. The statement

.
DECLARE BIST_INY NAME IMU_OATA-STRUCTURE INITIALINANE(IMU_INFT 1)}
&

“wxm

initializes NAME(BEST_IMU), i.e.. the pointer value. When a name variable is declared,
the amount of storage reserved is just enough for one address. T e INITIAL attribute
specifies the value to be placed ia this address word. The block of storage needed to contan
an IMU_DATA-STRUCTURE is not allocated when the name is declamd, thus the initial
values for the structure pointed at must be specified elsewheic. The statement shown causes
the name variable BEST _IMU to point initially at the second copy of iriU_INPT.

If the INITIAL attribute is not specified in a name declaration, the name initially points
nowhere. A special value is used as a null address so that all uninitiaized names have the
same values. This null value is an address at which it is impossible to locate dats and can be
written either a3 "NULL" or as “NAME(NULL)”. It 1s possible to determine whether or not
a nane variable points snywhere, as shown below:

. .
IF NANLIBEST_IMU) & HAMEINLL) THEN
MRITECO! ‘BEST I ST ONOSEN'S

& X4

The basic NAME syntax has been shown in the context of one example; the forms of
deciaring, initializing, re-pointing, and dereferencing (i.c., accessing the data pointed at) have
been shown. The main example used is machineindependent and at least somewhat applics-
tion onented. Nonetheless, there are pitfalls in the use of name varisbles. It is difficult to
find out what a name variable is poiniing at by examining the code surrounding » reference
to it. Data which is accessed via name varisbles is not fully tracked in the cross reference
hsting. Name variables allow a single Jocation to be referenced by several identifiers, possibiy
resulting in obscure sideeffects of assignments. Name variables also tend to bypass compiler

Rl e
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oplimization, since they make it difficult to find a segment of code over which a particular
variable is not modified. It is hard for either the programmer or the ¢r.mpiler to be certain
what is being changed when name variables are assigned into. Thus. it 1s {requently worth-
whi: to use a ‘ess efficient but less dangerous construct such & structure subscripting. A
common lament is "1 .hought | understood this cod: until | saw wesc - *~ variables!".

in most application code, name varisbles sh,uld be -+ -d~d- . possible gain in eifi-
ciency is generally outweighted by the loss in reiiability « . zintainability®*. Name vari-
ables are provided in HAL/S primarily to allo. the writing of _, stem software.

Exercises

13.JA Name any three HAL/S data items which cannot appear as an operand of the NAME
pseudo-function.

13.2B Which of the following can be done with name variables:

a) bypass HAL/S scoping rules,

b) declare a structure hode with copiness,

<) reference a single data item by several names or identifiers,
d) reference absolute addresses, and

¢) change the type of data.

13.3 LISTS AND QUEUES

The HAL/S language does not provide syntax for dynamic storage allocation. Tempo-
rary variables a~d space for intermediate results may be allocated and {reed dy the runtime
code, but all de. sions are made based on the static block structure, DO . . . END grouping,
clc. List processing languages can automatically release data that is not on any list and
allow the space so created to be used for new lists. HAL/S does not provide this type of
storage tanagement because it is not possible to guarantee that such systems will not run
out of storage: this would be an unacceptable condition in fight.

Aside from storage management, the most valuable feature of lists is that entries can be
deleted or inserted in the middle without copying data. This capability is avau. ble in HAL/S
through structures and name variables.

Consider the timer queue, a concept which is central 1o many operating systems. Each
entry in the quete contains a time and an action to be tsken. The queue is maintained in
order of increasing time: the top entry is loaded into an interval timer. T, could be coded
in HAL/S as shown on the next page:

*Qualitatively spesking. a peugram’s seliability is the probability that it has no hidden bugs. »'s mamiain-
ability is the probability thst it can be changed or extended without reducing reliability .
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STRUCTURE Tat:
TIMER QUEUE ELEMENT

3 TINE SCALAR,
1 ACTION INTEGER,
1 AFFECTED_FROCESS NAME PROCESS_CONTROL-STRUCTURE,
1 NEXT NAME TQE-STRUCTURE;
OECLARE TQ TQE-STRUCTURE(100)3

XIXZXT O =X

Thesc statements create a 100~copy structure, with four fields in each copy. Two fields
are name variables; they are referenced in the usual manner, ¢ g.,

TQ.AFFECTED PROCESSS(1;)

is the third field of the flrst copy of TQ. It is of type PROCESS _CONTROL-STRUCTURE.
Only the address is physically contained in T$(1 ), but the structure elsewhere is accessed
when the name variable is referenced in a normal context (i.c., outside of the NAME func-
tion). The name variable next points to a TQE structure; the last field of TQE is the name
of another TQE. We will explore the implications of this later. As it stands, all of the fields
in TQ are null. The queue could be initialized as shown below:

L] DECLARE FREE_Q NAME TQE-STRUCTURES
" DECLARF ACTV_Q NAME TQE-STRUCTURE]
M | INITIALIZE:
3 . .
] NAMELPREE_Q) = NAMRITR )
s 1 H
] DO FOR TEMPORARY N » 1 YO 994
[ 3 13 ¢
" NAMECTQ.NEXT ) 9 NAME(TQ "
s Ni Nels
" (1,1
b
v
) *
o7 g
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Now the entries in the queue are tied together with pointers, as shown below.

(1O

O,

Q] 1®

/

I ACTY Q $

Phe structure copy numbers are shown in the diagram, but each ficld can now be referenced
without using a copy number, as indicated in the tollowing table,

Referenced Data

TQS(1)
10820
TSI
TQ.TIMEH2)

Pointed To By

FREF Q

FRFF QNEXY
FREF G.NEXT.NFXT
FREE .NEXT.TIME

Sinve FREE Q.NEXT is the name of a TQL structure, it also has a NEXT field. This field
points at the third entry in the five queue, which af the moment is also the third copy of

.

The procedure bedow creates an entry in the active queue by removing it from the free
queure and inserting it at the appropraate point in ACTV  Q based on the time ficld.

[CoL U
PROCIDUSETWNEIN, WMNAT, PROCNAN )
DLCLARE WNEN ACRLAR,
WNAT INTERER,

DICLARE NEW NAME TQE-STRUSTURE:

VARTARLE IN A SEARCH
DICLARE ENT Nang Q- StRUCTLeE
IF NO FREE ENIRY THEN AN TRROR
.

IF MAMEAPREE @) » WL THEN
e

ZZIm n 3 N X2XI223

wm—-—*‘ﬁ-“ ; -——

’

FROCHANE NANY PROCLSS. CONTROL - STRUC TURE

TRE FOLLOMTNG HAME VASTABLE 18 USEP LIKE A LNOP
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ZIM I ON ZIIMITEIIMIMAIZIIMIMIMIIIMIAMITI OONMA IMII H Im™ N Im™ “

ELSE USE TUP FREE ENTRY FOR NEW ACTIVE Q FLEMENT

. )
NORE(HENY = NARE(FREE Q15

REMOVE NEW ENTRY FROM FREE_ Q

. .
NARE(FREE Q) ® HANELEREE_Q MEXYL;
PUT INFQ INTO NEW ENTRY

NEW TIME = MMEN;
NEW.ACTION © sHATS
. .

HAMEINER, AFFECTED_PPOCESSY = NANE(PROCNANEY;

NOH INSERY NEW ENTAY IN APPROFRIATE POINT OF ACTV QUEVE
EITHER BEFCIE FIRST.

BETWEEN ENT AND ENT.NEXT FOR 3OMC EHT
OR AY ENL OF GUEUE

IF NER.TINE < ACTV_Q.TIME THEN
Do:

. 3
NAME(NEM. NEXT) = NAMECACTV Q)3
. )

NAMECACTV_Q) = NAMEINEW):
RETURNS
£0ND:
. .
NAMETENT) & NARECACTV_ Q)3
.
DO UNTIL HAREUENT.NEXT) = NANEINULL)S
+ .
HANE(ENT ) © NARMESACTV Q)3
IF ENT.NEXT.TINE > NEW.TINE THEN
003
. 4+
RAMEONEM NEXT) = HANMECENT.NEXT)S
+ .
NAMEUENT.NEXT) » NAMECNEW):
NETURNG
(4,2

) 3
HAMECENT ) = NAMECENT NEXT);
0o}

AT THIS POINT , THE WHOLE O WAS SEARCHED UNSUCCESSFULLY,
30 ADD NEMW TO THE END

. *
NANETENT.MEXT) = NANEINEN);

.
NAME(NEN.NEXT) = NULLY

CLOSE ENQUEVE:

/% PUT FIRSTw/

/9STARY AT TOPw/
/% SEARCH Qe/

/%START AT TOPs/

/% NEW ENTNY INSERTED o/

/% TRY NEXT ENTRYS/

ORI

PC S,

et

L
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Ihts procedure can insert an entry in the middle of the queue without physically moving
subsequent entries down, since the sequence information is encoded in the links (name
variables) rather than the position in memory (the copy number). After

CALL ENQUEUEUO. 1. NULLY,

is executed. the queue looks like:

P / \ N — e )

If the next calls are

CALL ENQUEUE(20, 1, NULLY:
CALL ENQUEUE(IS, 1. NULL):

the quene looks like.

110 2 5 \ A

MO ¥©1RiO
[

Now, ACTV _Qis TQS(12),
ACTV  Q.NEXT is TQ$(3)), and
ACTV _Q.NEXT.NEXT is TQS$(2)).

Y S

f o patee
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: Thus when viewed as a list structure, the elements of ACTV Q are sorted by increasing
¢ TIME, even though

TQTIMEC) > TQTIMFS(3).

This queue could be used in implementing the HAL/S real time statements. The code
below illustrates how the timer quete might be used. The CALL SFT CLOCK and WAIT
FOR event statements are intended to load the value ACTV Q. TIME into an interval tuser.
and wait for the interrupt. This would have to be done via assembly language or “i-macros.
“Pervent”™ macros are impiementationdependent. They allow a pre<defined sequenve of
machine instructions to be inserted in a HAL S program. More detail is given in each User's
Manual.

]
M {INT _MAMNDLER:
M ITasK,
L DECLARE CLICK_INTERRUPT EVENT:
L] DECLARE TENP NAME TQR-STRUCTARE;
] 00 WHILE TRUL;
" CALL SET_CLOCKULACTV_Q.TIME) ASSIGN(CLOCK _INTERRURT):
L} RAIT FOR CLOCK_INTERRUPY!
L 00 CASE ACTV_Q.ACTION:
t )
L] CALL RECYCLE(ACTV_Q.AFFECTED_PROCESS):
! A
ol CALL CANCEL_PROCCLACTV_G.AFFECTED_PROCESS):
4 *
] CALL READY(ACTV_Q.AFFECTED_PROCESS);
[ 4 .
N CALL SCHEDULE _ATUACTY_Q.AFFECTED_PROCESS):
" H /u ETC W/
L] 0o}
c NOR REMOVE TQE FROM ACYIVE CoAIN
t + L}
" NAME{ TEMP) = NAMZAACTV_ Q)3
t . )
. ’ n NAME{ACTV_Q) = NAME(ACTV_Q.NEXT)}
|3 + *
* ! L} NAMEL TEMP.REXT) & NAMETFRED Q)
’ / [ 4 ) .
L] NAMECFREZ_Q) & NAME(TEND),
M 0o,
n jrrosty
N |RECYCLE:
" [PRCCEDUREIX):
L} OZCLARE X PROCESS_CONTROL-STRUCTURE}
. K [CLost;
; M | CANCEL _PROC:
N | PROCEDURE(X)}
- N DECLARE X PROCESS_CONYROL-STRUCTURE:
..
," )
ot
4
v
Sy
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With the process INT HANDLER running, and sppropriate routines to recycle, cancel, and
otherwise change process states, ENQUEUE could be called as a result of several HAL/S
statements. “WAIT .5." cxecuted by some process X might be translated to:

CALL ENQUFUE(RUNTIME + .5, 3. NAME(X)).
CALL STALL(NAMEF(X)): /®enter wait state®/

Here we are assuming that X is a PROCESS CONTROL-STRUCTURE. Such 2 structure
might consist of:

STRUCTURE PROCESS_CONTROL:

1 SAVE_AREA RIGID,
& FINED_REGS ARRAY(16) BIT(32),
T FLOAT_REGS ARRAY(Q) SCALAR DOUBLE,
2 OTHER BIT(30),

1 FRICVITIE INTEGER,

1 STATUS INTEGER,

1 NENY NAME PROCESS_CONTROL~STRUCTURE,

1 LAST NAME PROCESS CONTROL-STRUCTURES

IILTXTITXXITX

where the node, SAVE AREA is machine Jependent. This is a double linked list: each
entry has both forward and backward pointers. To see how this is useful, suppose that there
are three queues containing process control blocks (PCBs). FREEPC will be the anchor
(simple name variable pointing at the first clement of) of a queue of unused PCBs,
READYPC will be the anchor of a queue of PCBs representing ready processes, (sorted by
priority), and STALLED will be a queue representing blocked processes (... those in the
wait state). One of these queues is diagrammed on the next page. All three have the same
form. The STALL routine that was called above mught simply remove the indicated process
from the READYPC queue and add it to the STALLED queue. The argument to STALL is
the address of the PCB to be removed from the READYPC. 1t could be written as:

OECLARE READY_PC NAME PROCESS_CONTROL-STRUCTURE:
DECLARE STALLED NAME FROCESS_CONTROL-STRUCTURE;
DECLARE FREEPC NAME PROCESS_CONTROL-STRUCTURE;

STALL:
PROCEDURE ASSIGN(PCB)}
OECLARE PCB PROCESS_CONTROL-STRUCTURE

O XXX ON XXX

REMOVE FROM READY QUEUE

b AT St N0

e e e

B

e

e e _WESE JECT U
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. +
NAME{PCB.LAST.NEXT) = NAME(PCB.NEXT):

. +
NAME(PCB.NEXT.LAST) 2 NAME(PCD.LAST)S

ADD TO STALLED QUEUE AT THE BEGINKING

+ +
NAMEC(PCB.REXT) = NAME(FREEPC);
+ .
NANE(FREEPC) = NAME(PCB);
CLOSE STALL:
CLOSE LASY_ENAMPLE;

ITXIXIMIM O XmIm

The reason a double tinked hst s needed is that STALL receives the address of a PCB in the
middle ot a chain.

Imnvvc 3/ D %

To remove 1, the links of both neighbors must be changed. A singly linked list would suf-
fice if it was always scarched starting from READYPC.

In this section, we have sketched portions of one possible implementation of the HAL/S
real time statements. This design does not necessarily correspond to any actual operating
system, The point of this section is to give a degree of familiarity with sophisticated uses of’
name variables, and to illustrate that large portions of “system programs’™ can be written in
HAL/S.

This system presented is not at il complete. A routine is needed to make a process
ready. It could be essentially the same as the ENQUEUE routine shown earlier. The routine
that readies a cyclic process when the timer goes off should put a new entry in the queue for
the next cycle. Also, some lowdevel control code is needed to dispatch the highest priority
ready process. This process is always the one that corresponds to READYPC, since the
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ready queue is sorted, the top routine is always the one to receive control. However, there is
no HAL/S syntax for branching to a program or for loading/storing specific machine regis-
ters. At some level, assembly language has to be used, though HAL/S does allow certain
canned machine-nstruction sequences to be gencrated via v macros. These tmacros make
machine dependencies highly visible in the listing. If the ‘F-macros defined for a particular
implementation are not sufficient, assembly language comsubs can fill the gap.

Name variables, percent macros, bit strings, EQUATE EXTERNAL®, and the ability to
call assembly language routines all contribute to making HAL/S suitable for systems pro-
gramming. Use of these features in application programming is discouraged: nonetheless.
some safety is provided bv the type checking rules (as applied to name variables and bit
strings) and othcr safeguards. Even in the system-language portion of HAL/S, many forms
of bad programming practice are precinded by compiler restrictions, These features are
designed so that reliable, readable and efficient programming is still encouraged even though
it cannot be as thoroughly enforced when the system programming features are used.

Exercises
13.3A Declare and initialize a structure, CIRCLE, such that the following relation is true:

NAME(CIRCLENEXT) = NAME(CIRCLE).

13.3B Change the declaration of the timer queuc so that each element (TQE) is the head of
an arbitrarydength list of action-affected process pairs all to be done at the same

time, as illustrated.

H P — | )
|Acrv~o q/#ﬁ. TIME
| - ha
| = =iy
! D
! |
ACTION ‘ etc.
AFFECTED_PROC| | |
~ Iy w{
4 !
| |
ACTION 1 |
AFFECTED_PRCS] | =
Actions at W Actions at |
time 1 . time 2 .

*See appropriate User's Manual for details,
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Change the ENQUE UL routine to ather add the new element to the end of an

existing hst, (f there is already one, or more actions at that tme, or insert a new list
vonststing of 8 header and the pew item,

As wntten an the text, the provedure STALL may tad with some inputs, When will
this happen? Modify the procedure to remove this problem.

End of Chapter Problems

Wrte 3 provedure which will insert a PROCESS CONTROU-STRUCTURE 1 the
READY PC queue (both defined as in Section 13.3) after all entries having an equal
or higher PRIORITY and belore all entries that are lower. Remember 1o maintain
both torwand and backward links.

Wnte a program which will 1ead in two hexadecimal numbers (of up to six digits)

separated by erither a plus or minus sign, and prnt their sum or difference in both
decimal and hexadecimal.
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14.0 FIXED POINT

14.1 INTRODUCTION

HAL/S provides a scaled fixed point facility via the FIXED data type. It is expected that
the FIXED data type will mainly be used for computers which do not support SCALARs.

This chapter explains how fixed point computations are programmed in HAL/S. It gssumes
the reader is fannliar with fixed point concepts.

FIXED variables are declared as in:

DECLARE R FIXED @5,

A FIXED variable represents an engineenng value in terms of a stored fraction times a de-
JIared scale factor. In this example we have:

rekx 2’

where R is the fraction stored in vanable r, and the scale factor is 2 raised to the fifth power
tspecified by “@5™. Since R must always be a fractioni, » can represent values in the range
(32, 3D ie., (22, 22). 1t is the responsibility of the programmer to select a scale factor

larger than the maximum magnitude of values to be represented by each FIXED variable so
that the stored value is always a fraction.

The HAL/S approach to fixed point contributes to program portability and program
vorrectness. In the first place, a program employing FIXED computations does not need
any modification in order to be compiled for a different target computer. More importantly,
the only changes in the behavior of the program concern the precision of the values com-
puted. On computers with different word sizes, the number of bits employed in representing
FIXED values (i.c.. the fraction) will differ. However, the difference only affects the num-
ber of binary digits of precision. Therefore, computations on the shorter word-length

machine will be less precise than those performed on & longer worddength machine, but the
values produced will be very similar.

As for program correctness, HAL/S compilers enforce several language rules which
eliminate the common errors which can arise in the use of FIXED data types. One rule is
that the source and target of an assignment statement must have the same scale factor. A
program which Jisobeys this rule will obviously produce spurious results. The important
point is that unlike assemblers, HAL/S compilers will catch such errors during compilation.
Another rule is that scale factor equality is required for operands of addition and subtrac-

tion. and between arguments and formal parameters of subroutines. This rule’s motivation is
the same as for the first rule. '

In a (ractional representation using a finite number of bits, increasing the number of
leading binary zeros decresses the number of meaningful binary digits and thereby decreases
the precision. However, the likelihood of overflow is decreased when the number of leading
zeros is increased. Making a successful tradeoff between these two posilions requires an
understanding of the abstract computation deing performed. The programmer - not & com-
piler - knows best how to make this decision. Furthermore, it is often necessary for the

programmer to control exactly the rescaling to be performed, which is difficult in a context
of automatic rescaiing.

[P
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142 FIXED Point

For these reasons, HAL/S does not automaticaily rescale FIXED quantities, but rather
provides a rescaling facility so the programmer can exercise necessary control.

14.2 SCALING

Scaling can be performed on literals and expressions with the scaling operator
“@<exp>" in order to change their fraction and scale factor while prescrving their abstract
values. The ¢\pression:

314189, 5

causes the value of pi to be scaled by 25; i.e. the stored fraction of pi= 3 |4159/25. Note
that

304150 = 314159728 « 28
fraction scale factor
Applying " <exp>" to a FIXED expression has the effect of multiplying the original scale
factor by 2<€¥P> (ie. adding <exp> to the exponen: of 1), and dividing the fraction by
2<exp>, Literals without explicit scaling are considered to have a scale factor of 2V = 1, and
must have absolute values of less than 1.
Scaling can be employed in order to satisfy the scale factor rule for assignment, as in:

R = 3.14159:

where R has been declared with scale factor 25. Other instances of scale factor mismatch
can be adjusted through the use of scaling.

The scaling operator can also be employed in FIXED computations for maintaining
maximum precision and preventing overflow. Recall that precision is increased when the
fraction has fewer leading binary zeros, since then more significant bits can be held in a
storage unit. This may be accomplished by reducing the scale factor. For example, to reduce
the scale factor of R by 27, i.e.

reRx 25 Rg_3x2°

orRg_3 = Rx 23 = @8R

The fraction R is increased by a factor of 8, thereby reducing the number of leading zeros.
L ]

On the other hand, overflow can be avoided by increasing the number of leading zeros.
For ir.stance, if 7 = 24 s0 that R = .78, then coding:

2R
will cause overflow. If the scaling is changed to reduce the size of the fzaction:

Ra) = ,78/2 m 378 (where the scale factor is now 26)
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then the expression 2 R@l will produce .78, thereby preventing overflow. The abstract
value is correct, ie., .75 x .5. and the fraction has magnitude less than 1. Successful maxi-
mization of precision, while avoiding overflow, requires the programmer to fully understand
the ranges of the abstract quantities being combined.

Note that another method of increasing precision is to explicitly specify “@DOUBLE™
within expressions, though usually at increased execution and storage costs. See Section 3.4
for a description of the precision attributes.

14.3 EXPRESSIONS

The arithmetic operators have their usual meanings whea applied to FIXED expressior:s.
There are a few additional rules which specify the treatment of scale factors.

+, — Addition and subtraction. The operands are both FIXED data types
and must have identical scale factors. The result has the same swcale
factor as the operands.

Multiplication  Indicated by an adjacency. The operands are both FIXED data types
or one is INTEGER. An INTEGER operand indicates repeated addi-
tion (as specified above) of the FIXED operand. Otherwise, the
two FIXED data types are multiplied, and the resulting scale factor is
the product of the operands’ scale factors,

Division. The operands are both FIXED or the right operand is
INTEGER. The left operand is divided by the right operand. and the
resulting scale factor is that of the left dividend divided by that of the
right. For division by an INTEGER, the result’s scale factor is that of
the FIXED operand.

. Exponentiation. The left operand is FIXED and the right operand is
a positive INTEGER known at compile-time. Exponentiation indicates
repeated multiplication of the FIXED operand by itself, using the
multinlication rules specified above,

For example, let:
a=bc+d

be a computation to be performed, where the scale factors of the variables ase chosen for
illustration purposes. The following program fragment shows how this can be coded:

DECLARE FIXED,
A @, B@3C @i, DES,
A*BOCg_ s+ Dg 3
*A"BxCx2+Dx22 ¥
There is a potential for losing precision in the computation (B O)” because the resi.'t has at
least five leading binary acros, which are shifted out by “@—-5". However, if the computer

normally forms a double precision result as the product of single precision operands, then
the compiler will perform the rescaling on the double precision value before converting to
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cingle precision. Thus maximum precision is retained at no additional cost. In the absence of
such hardware support, the programmer can preserve precision with:

A = (B CapouBtEdw-5 * Da_ 3:

Chzck the appropriate User’'s Manuai for a description of how your particular HAL'S com-
piler treats this case.

Notice that the subscript notation for scaling operations contributes to the readability
of FIXED expressions. The scaling operations do not so clutter the appearance of 3 compu-
tation so its abstract meaning is easily seen.

Readability and modifiability can be enhanced by using named constants instead of
literals for scaling as in the following example:

DECLARE INTEGER.
PS CONSTANT(2),
RS CONSTANT(S).
C PISCALE AND R SCALE
DECLARE PLFIXED @PS CONSTANT (3.14159Gpg).

DECLARE FIXED,
R @RS,
AREA  @(PS+ 2 RS),
CIRCUM G(PS + RS).

AREA = PLR®*2;
CIRCUM = 2 PI R;

14.4 SHAPING FUNCTIONS

As with the other arithmeti data types, the FIXED data type has a shaping function,
which is named “FIXED™. A use of this function inclwdes a scaling specifier (in the usual
“@<exp>" subscript notation) to tell how the value bring converted to a FIXED is to be
scaled. For example, if J is an INTEGER with value 16, then the expression

FIXEDgg (D)
has the FIXED value

16/2% = .8

Thus, the scaling specifier acts ke the scaling operator. A legal usage of this expression
might be an assignment to the FIXED variable R from carlier examples:

R = FIXEDgg ());

Naturally, the FIXED shaping function can aleo be applied to scalars. The scaling speci-
fier must be large enough so that the converted value is truly a fraction,
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When converting from a FPAED to some other arithmetic data type, a sc.ling specifier
is also employed. This is used to satisfy the requirement that the scale factor of the result
of the convevsion be 1 (i.e., 29). For instance, one would write:

J = INTEGERg_g (R):

This has the effect of removing the scaling from the abstract value represented by R. (Note
that the expression:

Ra_s

has a similar intent of attempting to set the scale factor to |, but does not work because
overflow will probably occur) The other shaping functions SCALAR, VECTOR, and
MATRIX also have a scaling specifier when applied to FIXED data types.

14.5 VECTORF AND MATRIXF

The data types VECTORF and MATRIXF are similar to VECTOR and MATRIX, but
they have FIXED data types instead of SCALARs as components. Many of the operations
applicable to VECTORs and MATRIXs are available for their FIXED analogs VECTORF
and MATRIXF are declared and used with scaling, which sppiies to their FIXTD com-
ponents.

DECLARE POSITION VECTORF @10
INITIAL (100060, 30p;o —40@}0):

Further details on these data types can be found in the HAL/S Language Specification.

14.6 SCA’ING REVISITED

The construct “@<exp>" specifies scale factors which are powers of 2 Such scale fuc-
tors are advantageous because on most mechires rescaling can be accomplished by shifting
the fraction right by <exp> bits (left if <exr> is negative), and by adding <exp> to the
exponent of the scale factors, instead of the move > xpensive multiplication or division.

Occasionally it is more natural to use some other scale factor, e.g., pi. This is achieved
via “@@W<exp>". In this case <exp> itselfl b treated as the scale factor Th s “@e” is»
shorthanA for “@@2¢*,

DECLARE ANGLE FIXED €#P1
IMTIAL (1.9ep)):
C | RALIAN SCALED BY M.
... COS(ANGLE) ...

C TRIGO.\'IOMETRIC FUNCTIONS EXPECT FIXEDS SCALED BY M.
In this exampic, angle can be represented by:

angle 8 ANGLE x pi

LB Rem o

e



e

R
SO o ol
EoR:
r

14-6 FIXED Pont

Notice that scaling by other than powers of two implies that 1ctual multiplications and
divisions are performed.

It is even possible to have FIXED data types without any scaling.

DECLARE BE_CAREFUL FIXED INITIAL (0.15);

If an operation has an operand with unspecified scaling, then the resuit also has unspeci-
ficd scaling. Scale factor matching 1s not required when one of the expressions has an un-
specified scale factor. This mode of FIXED usage is rarely desirable because the compiler
cannot provide checking and scale factor support. Rather, it becomes the programmer’s
responsibility to perform the scale factor manipulations by hand.

One reason for employing FIXED data types without scale factors is in the simulation
of floating point. The built-in functions NORMALIZE and NORMCOUNT can be used in
such an application to shift out leading zeros, and count the number of positions shifted,

respectively.
End of Chapter Problems
DECLARE FIXED,
A@7,B@3,C@2,D@4,;
14A  Fill in the correct scalings in
A=(B Qg9+ g9
14B  Why s
B=2:Cqp:
Safer than
B=QCOg:
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Appendix A

ARITHMETIC FUNCTIONS

® Arguments may be integer or scalar.

e The data type of the result matches the argument type unless otherwise
noted. '

e Arrayed arguments generate multiple invocations of a tunction, one for
each element in the array. When two or more arguments are arrayed,
their arrayness must match.*

Name <Arguments(s)>

Comments

ABS(X) Absolute vajue 1X1.

CEILING(X) Smallest integer > X.
CEILING(—-3.4) returns - 3,

DIV(X\Y) Integer division X/Y; where scalar arguments are
rounded to integers. This construct is the only way to
do integer division in HAL.
DIV(S.2) returns 2.
Note: Where X, Y. Z areintegers X = 5. Y = 2. The
statement Z = X/Y results in two integer to scalar con-
versions and a scalar divide. Finally, the result is con-
verted to an integer type In this case Z = X/Y sets 2
to 3.

FLOOR(X) Largest integer < X.
FLOOR(- 3.4) returns -4,

MIDVAL(X.Y.Z) The value of the arsument which is algebraically be-
tween the other two. If two or more arguments have the
<ame value, that value is returned.

MIDVAL( 4, - 6, 3.5) returns - 4,
MOD(X.Y) X MOD Y (modulus). The result is scalar unless both

arguments are integoers.
MOD(S, 2 returns 2.
MOD(S, 3) returns 2.
MOIDX - 5.3) returns 1.
MOD(--5.- 3) returns |.
MOD(- §,2.1) returns 1.3,

AU DAL S S R L TS T AT A% A fe ALk st i A S b B Cem e e s e s

*For a discussion of arrayness, see Section 6.2,
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ARITHMETIC FUNCTIONS (CONT'D.)

Name <Argument(s)>

Comments

ObI(X)

Result 1s BOOLFAN. True if X is odd, faise if X is even.

IFODDIXN
THEN ...
Note. Scalar arguments are rounded fo integer.

REMAINDER(X.Y)

Signed remainder of integer division X/Y.

REMAINDER( 5.3) returns 2.
REMAINDER(S. - 3) returns 2.
REMAINER( §.- 3)retumns -2,

Note. Scalar arguments are rounded to integers.

ROUN™(X)

Nearest integral value to X, essentially the same as HA 1
scalar to integer conversion.

SIGN{X)

Returns an integer.  +1if X > 0
SLifX <.

SIGNUM(X)

Returns an integer: +1 it X > 0;
0ifX=0:
T1ifX<o
DO CASE(SIGNUM{X)+D),

TRUNCATE(X)

Strip off fractional part of the scalar (X).

TRUNCATE( 3.4) returns -3.
TRUNCATF(7.8) returns 7.
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ALGEBRAIC FUNCTIONS

e Arguments may be integer or scalar types — conversion to scalar occurs
with integer arguments.

e Result type is always scalar.

® Arrayed arguments cause multiple invocations of the function, one per
each array element.

® Angular values are supplied or delivered in radians.*

e Arguments that are outside the domain specified in the comments result
in HAL/S runtime crrors, (see Chapter 10).

Name <Argument(s)> Comments
hRCCOS(X) B X<,

ARCCOSH(X) X>1

ARCSIN(X) Xi< 1.

ARCSINH(X)

ARCTAN2(X,Y)

Returns 8 = tan~! (X/Y) where the proper quadrant for
—n < 6 < n is determined from the signs of X and Y.
Proper quadrant results if

X =K sing

Y = K cos @ ] K>0
ARCTAN(X) Principle value only; see above,
ARCTANH(X) X< 1.
COS(X) J
COSH(X)

-

EXP(X) eX,
LOG(X) log.X, X> 0.
SIN(X)

*One radian equals 57.2957795131 degrees, so that

# radians equals 180 degrces;
/2 radians equals 90 degrees.
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; ALGEBRAIC FUNCTIONS (CONT'D.)
Name <Argument(s)> Comments
: SINH(X)
SQRT(X) VX x>0
TAN(X)
TANH(X)
]
VECTOR-MATRIX FUNCTIONS
® Arguments are vector or matrix types as indicated
® Result types are as implied by mathematical operation
® Arrayed arguments cause multiple invocations of the function, one for each
array element
Name, Arguments Comments
ABVAL(@) Length of vector
DET(a) Detenninant of square matrix o
. ‘ INVERSE(a) Inverse of nonsingular square matrix a
) ): ¢« TRACE(a) Sum of diagonal elements of square matrix o
TRANSPOSE(a) Transpose of matrix o ~
- UNIT(a) Unit vector in same direction as vec!or-a-v
¥
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ARRAY FUNCTIONS

integen,

unarrayed.

e Arguments may be single or multi-dimensional arr: s of scalars or

o The type of the result maiches the type of the argument and is

Name <Argument(s)>

Comments

MAX(X) Maximum of all elements of X.
MIN(X) Minimum of all clements of X.
PROD(X) Product of all elements of X.
SUM(X) Sum of all elements of X.

S mdd e e R T R AR G e s e
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BIT FUNCTIONS

o HAL/S provides AND, OR, and NOT operators for bit operands. XOR
(exclusive OR) is available as a built-in function.

Name <Argument(s)>

Result Type

Comments

XOR(X,Y)

BIT

Exclusive OR, where X and Y are bit
strings. The iength of the result is the
length of the longer argument. The shoreer
argument is padded on the left with zeros.

[
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Appendix A A-7

CHARACTER FUNCTIONS

e The first ~rgument in each of the functions below is a character string. If
a scalar or integer is specified where a character string is expected, a con-
version to character type is performed.

Name <Argument{(s)> Result Type Comments

INDEX(C1,C2) Integer C2 is a character string. If string C2 is con-
tained within string Cl, an index which is
the location of the first character of C2 in
C1 is returned, otherwise, zero is returned.

INDEX(‘CHARACTER’. ‘ACTER") returns
5

INDEX(‘ALPHA’, ‘BETA") returns 0.

LENGTH() Integer Returns the current length of character
string C.
LJUST(CL,n) Character n is integer type - the string C! is ex-

panded to length n by padding on the right
with blanks. If n is less than the current
length of C1, an error is signated and Cl is
truncated to length n.

RJUST(C1.n) Character n is integer type — the string Cl is ex-
panded to length n by padding on the left
with blanks. If n is less than the current
length of C1, an error is signaled and C1 is
truncated to length n.

TRIM(CD) Character Leading and trailing blanks are stripped
from C1.
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MISCELLANEOUS FUNCTIONS

arguments.

@ Result type is as indicated,

o Arguments are as indicated; if none are indicated the function has no

Name <Argumeni(s)>

Result Type

Comments

CLOCKTIMF

Scalar

Elapsed time since midnight (format is im-
plementation dependent). See Chapter 2.

DATE

Integer

Returns date (implementation dependent
format).

ERRGRP

Integer

Returns group number of last error de-
tected, or zero if no error was detected. See
Chapter 10.

ERRNUM

Integer

Returns numb.r of last error detected, or
zero if no error was detected. See Chapter
10.

NEXTIME
(<label>)

Scalar

<label> is the name of a program or task.
The value returned is determined as
follows:

a) It the specified process was scheduled
with the REPEAT FVERY option, and
has begun at least one cycle of execu-
tion, then the value is the time the next
cycle will begin.

b) If the specified process was scheduled
with the IN or AT phrase, and has not
yet begun execution, then the value is
the time it will begin execution.

¢) Otherwise, the value is equal to the cur-
rent time (RUNTIME function).

PRIO

Integer

Returns prionty of process calling fune-
tion.

RANDOM

Scalar

Returns pseudo-random number from rec-
tangular Jistribution over range 0-1 *

*Note that for sny particular HAL program complex which contains references to RANDOM and/or
RANDOMG, the same set of “random”™ numbers will be gensrated in each execution.
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MISCELLANEOUS FUNCTIONS (CONT'D.)

Name <Argument(s)>

Result Type

Comments

RANDOMG

Scalar

Returns psevdo random number from
Gaussian distiipution with a mean of zero,
variance of one.*

RUNTIME

Scalar

Time since the software began execuimg
(implementatior. Jdependent format). See
Chapter 12,

SHL(X.Y)

Integer

X shifted lef: Y bit positions. X and Y may
o2 scalar or integer, but scalars are con-
verted to integer before shifting. This is an
anthmetic (signed) shift.

SHL(-2.D) returns -8.

SHR(X.Y)

Integer

X shifts right Y bit positions. As above, this
is an arithmetic shift.
SHR( -4,2) returns -1.

SIZE(X)

Integer

One of the following must hold:

— X is an unsubscripted arrayed variable
with a one-dimensional array specifica-
tion - function returns length of array.

X is an unsubscripted major structure
with a multiple copy specification —
function returns number of copies.

- X is an unsubscripted structure terini-
nal with a one-dimensional array speci-
fication — function returns length of
array.

Result is of integer type.

*Note that for any particular HAL program complex which contains references to RANDOM and/or

RANDOMG, the same set of “‘random” numbers will be generated in each execution.
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Appendix 8

Although the main body of this manual has avoided refsrences to specific compi’ers,
there is considerable similarity in the compilers now available. In this appendix we will de-
scribe additional software development support which is typically provided.

The HAL/S compiler is not simply a language translator. All current implementations in-
clude features not usually found in other common compilers, such as PL/1, FORTRAN, etc.
These include special processing and annotation of the listings, facilities for restricting usage
of variables or language fcatures, and additional outputs for post-compilation tools.

In addition 1o annotating identifiers and indenting as described in the text, the compiler
adds several types of sutnmary information to the hsting. At the end of each procedure or
function block, that block's interfaces are listed. The information presented includes lists of
global variables referenced or modified, external procedures cal'+d, event variables modified,
compool REPLACE macros used, and so forth. At the end of the listing a table of identifiers
is printed, including the data type and a list of all statements which use the identifier. Some
compilers produce a listing of annotated assembly language which corresponds to the
machine code actually generated. This aids in debugging on flight hardware, although more
sophisticated debugging supports is also provided.

Two facilities provide for the establishment of managerial control over HAL/S usage.
ACCESS rights allow restrictions to be placed on the modification of selected variables or
on the usage of blocks. Since this cun be done separately for each compilation unit,
ACCESS rights provide managers with an important tool for controlling the interfaces be-
tween modules. Another device is the SUBSETing capability, which provides the ability to
restrict the usage of a user selected subset of HAL/S language features or built-in functions.
This mechanism does not affect the code generated but merely flags by a warning message
on the primary listing those statements violating the SUBSET.

The efficiency and reliability of program complexes can be improved by use of a special-
purpose link editor or binder. These programs (e.g., HALLINK) can reduce storage require-
ment. by generating the call tree beneath cach program or task and allocating a temporary
storage area (or stack) just large enough for the longest limb of the tree. If a compiler sys-

'm includes an appropriate link editor, it may also add to software reliability; while the
various HAL/S modules are being bound together, they can also,be checked for consistency.
The template gencration system (Chapter Eleven) passes information to the link step that,
for instance, allows verification that every program used the same compool template.

Another output of cach compilation is a3 Simulation Data File or SDF. This is a random
access data base containing attribute and cross reference information for variables and code
blocks. Data concerning executable statements is also included, as well as global statistics
found in the primary listing. It is this large database that allows for many post-compilation
analysis tools, ranging from execution-time debuggers 1o HALSTAT, a statistics and analysis
package.
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Programmers have many modes of execution available to them in most implementations
of HAL/S. Even running stand-alone (on a host computer) one can obtain detailed error
diagnostics related directly to the HAL/S source by statement number and bloch name, and
optionally obtain an end of run formatted dump of ail variables. And if a program termi-
nates abnormally, a full traceback. showing the flow of control from block to block, will be
given. Another package allows one to request dumps and traces of variables while running in
a batch environment. This package can also provide a detailed log of real-time transactions,
showing the transitions from process to process. Morcover, certain implementations provide
the capability of “functional simulation,” or FSIM, of another target computer. In this
usage, the amount of memory used is approximated by allocating variables in the same fash-
ion as on the target machine. Also. the extent of CPU utilization s estimated for the target
machine with a running accumulation of time maintained automatically. The FSIM facility
is very useful in cases where the target machine is not commonly available or ie Jifficult to
use. One very valuable feature available under FSIM is the “profile” capubility: a listing can
be generated which shows the numbci of times each HAL/S statement in the program com-
plex was executed. The estimated total execution time for each statement, and other statis-
tics, allow the efficiency of programs written in HAL/S to be aitacked at the point of
greatest leverage.

One host computer contains an interactive HAL/S debugger. This program uses informa-
tion from the simulation data files as well as “‘hooks” inserted in the machine code to allow
debugging at the HAL/S level (i.c., without knowing any details of the underlying com-
puter). Breakpoints can be set by statement number or label. For instance, “AT LOOP + 3;"
sets a breakpoint three HAL/S statements after the label “LOOP”. Variables can be
inspected and modified by their symbolic names; all values are entered or presented in the
stand .rd external format. Data aggregates may be subscripted or printed in entirety. Since
the SDFs contain full type information, there is no need to debug in hexadecimal or octal,
or to continually specify display formats. Since HAL/S programs reference variables via
scoping rules, this debugger provides 2 SCOPE command. This command has a block name
as its argument: references to vanables in subsequent commands are interpreted as they
would be in the named block. A SCOPE command is automatically performed when a
breakpoint is reached; thus commands at a breakpoint can reference any variable that is
visible from the block in which the breakpoint was hit. The SDFs contain sufficient
information to allow similar capabilities in a *‘cross-debugger” to test actual flight code.

The large amount of data contained in the compiler’s outputs, especially the SDF's und
the object modules, permits the development of many post-compilation analysis programs.
Perhaps the best known of these is the HALSTAT program, which is used to accumulate
giobal dats about s program complex. HALSTAT performs three major functions: verifying
the consistency of SDF's, printing s*atistics for cach module, and giving a gloal dictionary
of variables. SDF’s are consistent if all variables shared by processes are in agreement with
respect 10 such factors as data type, size, location, and 30 on. Variables ar: glso checked on
8 global basis to insure that none are referenced that have no. ver been assigned; if this situ-
ation occurs a waming message will be given. Multitudinous statistics are printed for each
HAL module in the program complex, giving the name of the module and the date of com-
pilstion, size statistics, an' the modules’ pattern Lath in terms of HAL/S blocks incorpo-
rated and location of code scctions. The global symibut directory (GSD) portion of HAL-
STAT is a listing of every variable used in every module of the program complex, including
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both compool and local variables. It shows not only variable attributes and locations, but
also the cross reference data for cach variable across all mo fukes in which it is used The
cross reference shows both the HAL/S statements, by number, where an item is used, and
also the way in which it is used, e.g. REFERENCF?, ASSIGNED. SUBSCRIPT, etc.

Additional programs have been developed to meet the needs of specific instaliations.
One program provides a complete disassembly listing of a HAL/S load module, which shows
clearly the relationships between the machine code instructions and the HAL/S source.
Since the typical program complex’s load module incorporates code from both HAL/S mod-
ules and assembly language modules ( from the runtime library), a list showing both of these
is essential to review the integrated system. Another program provides the above disassem-
bly capability but limits it to user-specified machine instructions, a facility that is very use-
ful in assessing the impact of instructions that are not correctly implemented in a machine’s
hardware, or in determining the extent and nature of operating system interfaces. There is
also a program which produces a list of all Iccations deemed to be invariant After execuling
the load module for a period of time, one can dump the contents of memory and see .y
these “neverchanging” memory locations have indeed changed, which would indicate a
problem in the load module. Another program s used to compile, based upon programmer
specification of the data items desired, a list of all parameters that will e patched. This list
includes detailed information about each variable, such as type, size, and location, to allow
it to be modified in the correct fashion.

As more installations use HAL/S on an ever-growing number of target machines, the
amount and diversity of the support software is certain to grow. The capabilities described
here may and may not be present in a particular system, but like the HAL/S compiler itself,
these utilities are written in a high order language, and as machine-independently as possibie.
The functional simulation and post-ompilation analysis tools have proved so valuable in the
Space Shuttle program that they may cventually become required components of any
HAL/S compiler system.
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Appendix C: Answers to Exercises
Solutions

a) valid, identifier
b) valid, keyword
¢) invalid

d) valid, literal
¢) valid, identifier
) invalid

8) valid, identifier
h) valid, keyword
i) invalid

J) v:lid, keyword
k) invalid

1) valid, identifier
m) valid, literal

8) AXBY«C2Z
b) (A+B)/C + D/(E+F)

3 *SiIN=1)/(2**N-1)
e Tty 5 ATl M)
o tX-1)*%3
0N 100exery
8 (10°*X)**Y
B (V.W/(.V) V
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a o *"as not the multiplication operator in HAL/S,
Correct expression M X+B.

by lncorrect operator precedence.
Correct expression. 2 (X+1),

¢) Multip¥ication is represented by a blank between two operands.
Correct expression: X**(-2.5 N).

d) Two operators may not occur in succession,

Correct expression: C**(--5).

¢} Spaces denoting multiplication of both numerator and denominator ate missing,

Correet expression. A C/AB D) or (A O)/(B D).

DECLARF SCALAR INITIAL(1). X_DELTA. Y DELTA:
DECLARE TIME DELTA SCALAR CONSTANT(1),
DEFCLARF DELAY FACTOR SCALAR CONSTANT( §);
DECLARYE SCALAR, TEMPI, TEMP2, TEMP3,

DECLARE COUNT INTEGER INITIAL(1);

DEFCLARE POINT A VECTOR,

DFCLARE ORIGIN VECTOR CONSTANT(0,0.0);

DECLARF TRANSFORM MATRIX INITIAL(1,0,0.0,1.0,0,0.1);

ROOTS:
POOGRAM;
DECLARE SCALAR,
A B, Cy ROOT1, ROOT2;
READ(5) A, B, C;

4 Q.8
ROOT. = (-B+ (B ~4A0) Y722 M
2 0.5
ROOTZ =2 (-8 - 1B ~ 4 AC) Y/ 2 A
(DITEC6) ROOT1, ROOT2:
CLOSE ROOTSS

ZTIMIMAIIIIX
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DECLARE SCALAR,

HEIGNT,
TIME INITIAL(Q);

HEIGHT = 110}

172
TINE = (T HEIGHT 7 320 /% BOUNCE 1 &/
HEIGHT = .35 HEIGHT;
/2
TIME = TIME « 2 (2 NEIGNT / 32) i /% BOUNCE 2 w/
+35 NEIGHT:
12
TIME = TIME + 2 (2 NEIGNY / 32) 3§ /% BOUNCE 3o/

WRITE(S) TIME;
WRITEL6) & TIHES

ZZIIXIMIIMITIMIIIIIX

exiC:
PROGRAM;

ZXIXIMIXIXIXIIX

CLOSE EX2C:

DECLARE MASS_OF_EARTH SCALAR CONSTANT(S.983€27);
DECLARE PI SCALAR CiNSTANT(1.14189268):

DECLARE RADIUS SCALAR INITIAL(4000 160934.4);
DECLARE PERICD SCALAR;

2 3 0.5
PERIOD = (16 PI RADIUS ) / (MASS_OF PARTH 6.67E-8))
RRITE(4} PFRIOD;

SOLUTION:

PROGRAMI
OECLARE SCALAR,

Ay By Cy Dy Es Py Xu V3

READ(S) A, B, C4 D, £ 13
X=(E0-8F)/7(AD-BCH
Ya(AF-CEC)/7(AD~-BC)
WRITE(N) Xy ¥}

CLOSE SOLUTION:

IXZXIXZXIXTIXZ
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Solutions
1A
a) Integer, value is 1,
12 4
M Matrix (3by D ovalues | 23§
Yy 3o
) vector, value s [l ]
({)
.18
M| TRAN MUL:
M | PRCGRAM;
[ DECLARE M MATRIX CONSTANT(9, 8, 7, 6, 5, 4, 3, 2. 1);
[ 4 - .
[ WRITE(6) M TRANSPOSE(M);
M | CLOSE TRPAN_MUL: 1
REIe
a) (108 (2 X2
M ARCTANGY/'X)
¢ M(RZ DOU /72 R DOD SIN(PHDY M R Z PHI DO COS(PHD
d) ARCCOSUM/R M A/NV/SQRIQX M F+M**2 A**/N**2))
e} LOGETAN(N/2+P1/40
32A

W 1,70

13
M 14
1S

) DFCLARF
DECTARF
DFCLARE
DECLARF

n,

()

[3 0 3 o]

A T O |

VI VECTOR(6) INITIAL(0,1,2,3.4,5):

VY VECTOR(o) INITIAL(I0,11,12.13,14,15);

M2 MATRIX(2,2) INITIAL(S.6.7.8),
M35 MATRIX(3.S) INITIAL{7. 41, 2, S630 3, o052 1

X

e
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This is an example of how over-specifying a program may lead to inefficiency. Two
answers are given here; the first follows the statement of the problem literally, while

Appendix C C-5

the second produces the same result in a different way.

ZIXIM GOZIM AOXM GIMIIIIII

ZANXMIZIRIZ

COMP_DOT:
PROGRAM;
DECLARE VECTOR,
CRIG_VEC INITIAL(1, 2, 3)
RESULT_X:
OECLARE ORIG_MAT MATRIX INITIAL(1, 2, 3y &, 8y &, 7, 8 9

RESULT_X = ORIG_VEC . ORIG_MAT
1 1

ReSULT_X = ORIG_VEC . ORIG_MAY
2 e

RESULT_X = ORIG_VEC . ORIG_MAY
3 "3

MRITE(6) RESULT_X:
CLOSE COMP_DOT;

DECLARE VECTOR,
ORIG_VEC INITIAL(1, 2, 3)y
RESULT_X;
DECLARE ORIG_MAT MATRIX INITIAL{Y, 2, 3, &) 8. 6, 7, 8 903
[]

RESULT_X 2 ORIG_VEC ORIG_MAT;

WRITEI6) RESULT X:
CLOSE COMP_DOT3
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3¢
21
. . 22
WRITE(6) V41 will output the vector 23
24
The first WRITF(6) M22 will outpui the matrix [Ag ‘g]
0o 1 2
WRITE(6 ' M13 will output the matrix 7 &8 9
o213
The seconc WRITE(6) M22 will cutput the matrix [9 l]
3.5A
) o <> e results scalar.
iy + <>, /], ** results scalar.
i) -, I>, [, results scalar,
112 B S 3 results integer;
[, ** results scalar.
vy 4 - * results vector;
<> result matrix:
. result scalar.
vi) <> result vector,
vii) <>,/ results vector,
viil) <> cesult vector,
ix) 4+, -, <> results matrix.
X) <>/, ** results matrix.
3A
M | anoLes:
n | ProGRAM:
] GECLARE 'ECTOR,
N Vi, vei
! - -
n READES) V1, V2§
[ - - - -
" WRITE(6) ARCCOSTIVY . V2) / (ABVAL(V1) ABVALIV2)))}
M | CLOSE ANGLES:

R e LT SRR EE PO A A N
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a) V4 = VECTOR$4(MS(2.2), M$(3.3), M$(4,4), MS(5.5).

b) M22
¢) M34
d) VI0o

Appendix C C7

TRANS:
FROGRAM;
DECLARE SCALAR,

ALPHA, X1, X, Y1, Y2,
PI CONSTANT(3.1415);

REAB(S) X1, Y1;
ALPHA 3 17 PI /7 180;

X2 ® (X1 - 54000) COSCALPHA) + (Y1 - 118000) SINIALPHA);
Y2 = -(X1 ~ 54000} SINTALPHA) ¢ (Y1 - 118000) COS(ALPMA);

WRITE(S) X2, Y23
CLOSE TRANS;

= M% TO 3, 8 TO 9)

= M$S TO 7, 7 TO 10);

M$(9.*);
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Solutions
4.1A

a) Compound conditions like ‘A < B < C’ are not recognized by HAL/S.

b) The THEN clause of an IF. . .THEN. . .ELSE group may not be an IF statement

¢) The expression following the ‘NOT' operator must be parenthesized.

" E‘lP Al

4.1B

A4

A3
b) Impossible: the ELSE clause of C2 branches into the ELSE clause of C3,

ERE él

¢) Impossible: the THEN clause of C2 loops around, which would require travers-
ing a line upward.
d)

THEN THEN THEN THEN
Cl Al
ELSE
L]
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A

4.1C

4.1D

4.2,

[

a) Not satisfied.

b} lllegal. The correct syntax is NOT >.

¢) Satisfied.

d) Satisfied.

¢) Illegal. Vecror comparisons must involve subscripting.
) Not satisfied.

g (A>B)&(AO)

h) (V1=8) & ((C>=D)(D =4y

IF W < L THEN 8Q =
ELSE IF W > L THEN SQ =
ELSE SQ =1;

IFSQ=0 THEN WRITE(6) ‘NO SQUARE';

ELSE IF AREA < 4 THEN WRITE(6) ‘SMALL SQUARE";

ELSE WRITE(6) ‘LARGE SQUARE";

Appendix C C-9

' _} ——l The ornginal code was over 300 state-

160 statements.

r———-
|

I

I
L___

CP rectangle.

ments, while the new code is about

This change can be made in a valid
HAL/S program: group C is removed
entirely from the IF statement, which
now consists only of the section of
the flow chart lying within the dctted
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Note that this flowchart:

o

does represent a shorter program than the original, though it cannot be translated
into a valid HAL/S program, as this would require branching into the ELSE clause

~O—
t

of the condition, which is not legal in HAL/S.

4.2B

4.2C

AXTXXITXIXIXXIAXIIXRI

S0LUTION:
PROGRAM;
DECLARE SCALAR,

Ay By Co O: By Fu X, Y5

READIS) A, 8, C, O E, F;

IF(AD-BC)= 0

KRITE($) 'NO SOLUTION EX1373';

eLse

WAITE(S) X, ¥
END;
CLOSE SOLUTION;

THEN

IF Y < X THEN DO;

IFY<X - 'THEN Y = Y + |;

END;
EISEIFY> X+ 1 THEN X = X - I

ELSE X = X + 1,

ELSEY =Y - 1|



4.2D
a) The line from C4 to C represents a branch into the ELSE clause of C3, which is
illegal in HAL/S.
b) The following flowchart removes the difficulty without making any change in
the order of execution of any statements:
ELSE ATHEN
\C'/
ELSE THEN ~LSE THEN
]
(] I ]
ELSE THEN
C4
3
- ' .
- ’ P IF C1 THEN DO;
‘ IF €3 THEN D;
ELSE C;
END;
; ELSE IF C2 THEN DO;
‘ IF C4 THEN C;
i END;
Q‘ ELSE A;
£
4 r" ot
4w
s B i GRS e AT TEE e
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¢) If the flowchart had been structured, it wou.d have been awkward even to draw
lines from both C3 and C4 to C, and the fact that there was an illegal construct

in the flowchart would have been obvious. To illustrate:

THEN THEN
= lron
Rl {C3 >— { D |
ELSE -~
ELSE THEN
[c2™>- {ca>— l'—c |
e b THEN

ELSE [ ]

4.2E  There are several possible solutions, one of which is given here.

OCI&C2&
s ]
ELSE THEN
]
L+
] ,
|
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4.3A

4.4A

Appendix ¢ C-13

HAL/S code to implement the revised flowchart would be:

a)
b)
<)
d)
)

)

IF (C1 AND (NOT C3» OR (NOT C1 AND (2 AND C4) THEN C,
FLSE IF 1 THEN D;
ELSE IF 1C2 THEN A;

Relational expression, not satisfied.
Boolean expression, false.
Relational expression, satisfied.
lllegal.

lllegal.

Relational expression, satisfied

Boolean expression, false.

DO CASE | + |

ELSE SCRAMBLE = 3,

SCRAMBLE = 4;

SCRAMBLE = 0,

SCRAMBLE = §;

SCRAMBLF = 3,

SCRAMBLE = 1,

SCRAMBLE = 2;
END,
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5.1A

S.1B

5.1C

$.1D

Since the loop control variable is an integer, while the increment is the scalar value
.1, on each iteration ! will be added to .1, the resulting 1.1 will be rounded to 1, and
the control sariable will never change. That is to say, the loup will never terminate,
30 the question is unanswerable.

DECLARE V VECTOR(S),

DECLARE NEG_PART INTEGER;

PO FCR NEG_PART = 5§ TO | BY -1,
IF VSNEG_PART < 0 THEN EXIT:

END;

Note that if no component of V is negative, NEG_PART will equal zero upon exit
from the loop.

N is equal to 14 on exit from the loor, hecause in DO FOR 1= ] TONBY 2,Nis
evaluated only once, upon entry to the luop, when its value is 9. The Joop will there-
fore be executed five times, leaving N equal to 14,

a) The cuav asaigns the value .2 to all the elements of A.
b)

DO FOR X=1TO S$;
DOFOR Y= | TO §:
AMX.Y) = .2,
END;
END;

e ————— 7 57
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5.°A
a) The program will write the values:
2 INITIAL _VALU'E
4 INITIAL _VALUE
8 INITIAL _VALUE
16 INITIAL _VALUE
b) PO FOR X = | TO 4,
N - Y
WRITEA6) I,
END;
e possibility
DO FOR X = ! TO 4;
WRITE(6) 2**N;
END;
is another, and clearly there are many others.
$.3A
DECLARE V VECTOR(S);
DFCLARE NEG_PART INTEGER;
DO FOR NEG _PART = | TO § WHILE VSNEG PART > = 0
END;
IF NEG_PART § THEN NEG PART = 0,
$4A
If V$] = 0, the code shown will not exit with NEG_PART = |, as it should. This
occurs because the UNTIL clause w.ll not be evaluated for the first * ime untit 2 has
been assigned to NEG _PART in the DO FOR loop.
$.EA

a) 1 wAN101
b) X=10}

DR o e TERAE A PR SR S & oo .
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SA
For this solution, we take the original DELTA to be , and assume

FINALINITIAL
that INITIAL < FINAL. 5

! SIMPSON:
PROGRAM;
DECLARE SCALAR,
INITIAL_VALUE, FINAL_VALUE, OLO_APPROX, NEW_APPROX, POINT;
DECLARE SCAUAR,
DELTA, EPSILON;
OLD_APFROX, NEW_APFROX = 0;
READ(S) INITIAL VALUE, FINAL_VALUE, EPSILON;
DELTA = (FINAL_VALUE - INITIAL_VALUE) / §;
DO UNTIL (NEW_APPROX - OLD_APPROX) < EPSILON;
OLD_APPROX = NEW_APPROX;
NEW_APPROX 3 SQRT(INITIAL_VALUE) ¢ SGRT(FINAL_VALUE};}
DO FOR POINT » INITIAL_VALUE + DELTA TO FINAL_VALUE - (DELTA / 2) BY DELTA;
NEW_ARFROX 2 NEW_APPROX + 2 SQRT(POINT);
END;
NEW_APPROX ® NEW_APPROX DELTA / 2;
OELTA = DELTA / 2;
£NO;
WRITE(4) NEN_APPROX;
CLOSE SIMPSON;
L

TIXTXIZIZIXITIITIXZIXIXITIIX ¢

a) This program admittedly an inefficient one, will print all prime numbers from 3
through 499,

b) A solution that does not change the computations performed is:

4
f
i M | servem:
. M | PROGRAM:
- " DECLARE INTEGER,
: " NUMBER, DIVIOER;
H " DO FOR MUMBER = 3 TO 499;
¥ " DO FOR DIVIDER = 2 TO NUMBER - 13
: M IF RODINUMBER, DIVIDER) = 0 THEN
5 " EXITS
B ] END3
v " IF DIVIOER » NUMBER THEN
} n HRITE(6) NUMBER;
| " NG
: M | CLOSE BETTER;
?
3
|;?
{
¢
¥
1
s b
4
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Solutions

6.1A

a) lllegal. X is set to 3, but a variable with the INITIAL attribute is not considered
to be computable at compile time, so the declaration of LIST_ONE is errone-
ous,

b) Legal. LIST_ONE is an array of 4 scalars, value (.2,.2,.2,.2). LIST_TWO is an
array of 4 integers, values unknown.

c) Legal. LIST_THREE is an array of 18 scalars, value
G 5,2,2.2,2,2.2.0).

d) Legal. LIST_FOUR is a 9 by 3 array of 27 scalars, value
1y 2 02 2 2 2 .2)
2 200 2 7?7 2 7?2 7 17 7
(R A A S S S S
e) Illegal. The ARRAY specification must precede the type specification.
6.1B

a) EXERCISE_2:
PROGRAM}
DECLARE M MATRIX(S, 5);
DTCLARE TIME ARRAY(100) SCALAR INITIAL(0);
DECLARE SCALAR INITIAL(0),
THIN, THAX, THEAN, SUM_OF_SQUARES, STAN_DEV;
DECLARE INTEGER,
I, J» K3
0O FOR I = 1 TO 300;
DOFOR J =1 10 S;
0O FOR K = 1 TO S;
N = RANDOM;
K

END:

END;
TIME ® RUNTIME;
1

. me)

HsH 3
TINE = RUNTIME - TIME 3
1 1

END3

NOW PROCESS THE HUNDREO-SAMPLES IN THE ARRAY [TINE)
THAX, THMEAN, TMIN s TIME 3
1

WX O X UWIXIXIM VWIIIT OIIXZITIIIXIXIXIIX
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EZIIX WEIMIX OON 33 VI VI B WX wuxXx

o>
'

00 fOR 1 s 2 YO 100:
THIAN 8 THEAN ¢ TIME
1

IF TIME > THMAX THEN
t
THax = TInt ;
1
IF TINE < TMIN THEN
T
THIN = TIME
1

60o;
THEAN = THEAN 7 100;

COMPUTE STANDARD QEVIATION
SUN_OP_SQUARES * 0}
00 FOR'X * 1 TO 100;
2
SUM_OF_SQUARES » SUM_OF_SQUARES + (TINE - TMEAN) §
1

END3
STAN_DEV = SQAT(SUM_OF_SQUARES 7 100);
SMITR(6) “MIN = ', THIN, ° MEAN & ', TMEAN, ' PAX = ', THMAX, ' STANDARD DEVIATION = °, STAN_DEV:

CLOSE EXERCISE 23

AZIIMAIIXZTIIIMZIZIIAMIII GOIIXXIIXIIIZIIIIZTX

EXEPCISE_2:
PROCRAN;
OECLARE M MATRIX(S., 8):
OECLAPE TIME SCALA INITIALID);
DECLARE SCALAR INI.IALIO),
THIN, THAX, THEAN, SUM_OF_SQUARES, STAN OV;
DEZCLARE INTEGER,
Lo do Ki
THEAN, SUM_OF_SJUARES *= 0:
THAX ® 1} /% LESS TMAN ANY POSSISLE TINE VALUE »
THIN & 10003 /% GREATER THAN ANY FEASIOLE TINE VALUE
DO FOR X = 3 10 100;
DO FOR J = 3 TO $;
DOFOR K = 170 8;
" LIS H
JiK

®o;
[ {1
TINE = RUNTIMES

. 8.}

LI

TIRE = RUNTINE - TIMED
THEAN = THEAN ¢ TINE}

2
SUN_OF_SQUARES ¥ SUN_F_SQUARES ¢ (TINE) ;
IF TIME > THAN THEN
THAX = TIRED
I TIME < THIN THEIN
THIN ® YING:
™o:
THEAN © THEAN / 3004

t
RES / 100) - THEAN 13
REAN & °, THEAN, * MAX 3 ', YMAX, ' STANDARD DEVIATION s ', STAN_DEV

STAN_ORV = SQRT((3UN_OF W
WRITE(S) *MI% & *, THIN,
CLOSE ExEacisl ¢

PSR
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EXAMPLE_2:
PROGRAM;
DECLARE GYRO_INPUT ARRAY{12) INTEGER INITIAL(O);

DECLARE ATT_RATE ARPAY(12) SCALAR;

DECLARE SCALE ARPAY(3) CONSTANT(.0}3, .026, .013);

DECLARE BIAS SCALAR THITIALIS7.296);
00 FOR TEMFORARY I = 0 TO 9 BY 3;
DO FOR TEMPORARY J = 1 TO 3;

143 144

ATT_RATE = GYRO_INFUT  SCALE + BIAS;
3

END;

:
CLOSE EXAMPLE_2:

61D

6.2A
a) Legal
b) Ilegal
¢) Legal
d) Legal
e) Legal
f) Hlegal
8) Legal
h) Legal
i) Illegal
P Legal

6.2B

ST LUIXIIIXIXX

X VX O

EXAMPLE_AA:
FROSRAM;
DECLARE A ARRAY(S) SCALAR;
DECLARE TEMP SCALAR;
TEMP = A
s

DO FOR TEMPORARY T = ¢ TO 1 BY -1;
A A
Tel T

END;
A & TEMPS
1

CLOSE EXAMPLE_&A;

k) Legal
1) Megal
m) llegal
n) Legal
o) lllegal
p) Legal
q) Legal
r) Legal
s) Lt{zal
t) [Ilegal

Appendic C (19

A single arrayed statement takes the place of one or more loops and a statement to
perform the same operation on each array element that the arrayed statement per-
forms on the entire array. If the progrummer writes these loops, loop variables must
be declared. correct foop limits must be coded, and such jo~ns must be nested it the
array is of two or more dimensions. This means extra work for the programmer, and

T S oty G et B T e T

R

- e
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6.3A

6.3R

6.3C

more complicated and potentially incorrect or unreadable code. If an arrayed state-
ment is coded, the compiler does the bookkeeping, and may even be able to produce
more efficient code, since loop variables will not need t.» be saved for later reference.

AT T e e
Qa2 o2
aallr 2 2L 00

L
]

R

b) [

<
"

el

d)

7 I}
>
" [

175
]

S = AS2I;

MS$(1.2 TO @)
M$(1.5 TO 7)
M$(1.8)

MS$(1.2 TO 4)
M$(1,5 TO 7)
MS$(1.8)

M$(1,2 TO 4
M¥(1,S TO 7
M$(1.8)

M$(1,2 TO 8)

1
1
1

= X$(3:1,3);
= Y$(3.1:3);
28(7:3);

SRERE
tl A
d4 Lot
7 M
? 92
L7] L]
Y )
” ?
L?d L2
- 17

1

|

X$(2:3.);
X$(3:1.*);
X$(3:2,1);
Y$(2.3:*);

Y$(3,1:%);
Y$(3,2: 1)

Z3(6:*),
Z3(7:%);
Z23(8:1);

AS(16 TO 22%

 CIEIEIGIEIGIED

CLAGL L 2022200202 22,2000

} from X
} from Y
} from Z

b e mvr ews b
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6.3.1A

6.4.1A

WwITMIX AImMIXIXX

TIXIXXX

PRIMES:

PROGRAM;
REFLACE LIMIT BY ~100";
DECLARE PRIME ARRAY(LIMIT) BOOLEAN INITIAL(TRUE);
DO FOR TEMPORARY I = 2 TO LIMIT;

IF PRINE  THEN
1:

0O;

DO FOR TEMPORARY J = 2 T 7O LIMIT BY I;

PRINE ® FALSE;
Y
END3
kRITE(S) I3
END:

END;
CLOSE FAIMES;

DECLARE TEMP VECTOR(17);

TEMP = VECTORS27(X):
M$(1.2 TO 8) = TEMPS(l6 TO 22);

TEMP = VECTORS27(Y):
MS(1.2 TO 8) = TEMPS(16 TO 22),

TEMP = VECTORSIN(Z).
M$(1,2 TO 8) = TEMPS(l6 TO 22);

The assignment {rom A is already quite simple.

Appendix C 21
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64.1B

3 ARRAY(2.3) INTEGER: (:

b) ARRAY(12) INTEGER: (231231231213
¢} ARRAY(3) SCALAR: <1 .1 .n

9 ARRAY(2,6) INTEGER: q

e) d 0
MATRIX(3.3): S IS B |
.1

1o
n i
2
VECTOR(6): i
2
3
oA
HEDTAN:
PROGR M

DECLARE I'.7EGER,
Xo TEMP, SHALLEST;

78, 133, 234, 345, 450, S6T. €78, 789, £90, 937, 876, 768);
DO 707 X = 1 YO I3t
SMALLEST 2 X
CO FSR TEWFCRARY J 3 X ¢ 3 TO 285
IF VALUE_LIST < VALUE_LIST THIN
J SHALLEST
SMALLEST = 4}
"
IF SHALLESY ~s X THIN
00;

i
TEne = vaLUg_tI8T :
MaLLEST

VALUVE_LIST ® VALUE_LISY ;
SnALLLS? X

VALUE_LIST s Tnp;
X

o3
to;
WRITECH D "MEDIAN = ', VALUE_LIST 3
13

2 MIXTXT B3I O3 AIIIII LIITITIXXTII

CLOSE MEDIANG

OECLARE VALUE_LIST ARRAY(IS) INTEGER INITIAL(76: 87, 65. 54, 43, 37, 21, 12, 23, 34, o5, 56, &7,

B b ————— <

l
l
;
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DF.("LARF. TIMING DATA ARRAY(4,26) INTEGER INITIAL(0);
DECLARE I INTEGER;

DO FOR I = | TO 25§;
TIMING _DATAS(1 TO 3.) = TIME_VALUESS(*.D.
TIMING _DATAS(4,1) = SUM(TIM_VALUESS(*.IN,
END:
DO FOR | = 1 TO 3;
TIMING _DATAS(1,26) = SUM(TIM _VALUESS(1.*).

END;
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7.1A

[ V]

7.1B

line 3:
line 6:
line 7:

7.1C

Block:

N b W N

1.2A

the variable Y is known only within the scope of function PROC1
Function PROC1 cannot snvoke itself
PROC?2 has not been declared or assigned.

May be invoked from block(s):
134,56

1,2

3,56

34

S

Move the code block defining ALMOST_EQUAL from the end of the program to a
point before ALMOST _EQUAL is invoked; i.e., immediately before or after the
block MASS.

7.2B

a, The function RANDOM returns a scalar X with uniform distribi-tion in the range
0< X <. The function ROLL uses the implicit scalar-to-integer conversion sup-
plied by HAL/S, with implied rounding. Its results may be described by a table:

a random value in the range: yields an amount of:
o< x <.l |
A€ X <3 2
< x <§ 3
S5< x <7 4
J€ X <9 s
9< x <I 6

Thus, it is clear that the probabilities that ROLL will return | and 6 are 1/10,
while the probabilities of 2,3,4, and S are 1/5.
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IZITIJTAXITZITIXZIIXIITX

X O AOIIIITIAIIIIIIIXIIIZIXIII

PIX_ROLL:
PROGRAM}
DECLARE COUNT INTEGER INITIAL(O);
DECLARE I INTEGER:
nOLL:
FUNCTION INTEGER;
RETURN TRUNCATE(6 RANDOM o 115
cLose;
oo FOR I =1 T08;
0O UNTIL OLL + WOLL = 7;
COUNT 5 COUNT o 1}
N3
0o;
NRITE(S) COUNT;
CLOSE PIX_ROLL}

FIND_GCDS:
PROGRAM;
CECLARE ARRAY(S) INTEGER,
Xo ¥

. ‘
DECLARE I INTEGER;
8co:

FUNCTION(IL. I2) INTEGER;
OECLARE INTIGER,
I 120 X0 Yo W}
X s 18
Y s 1
00 WHILE X == 0}
R 3 MMATNOER(IY, X))}
Y s
X =R
IND}
RETURN ABS(Y);

LOSE 603
fea0(8) (x1. LY
DOPOR S = 1 Y0 85
IP 8CDIX o ¥ ) =z 1 THEW
T 1

no}
CLOST FIND_OCO8;

MRITE(O) X » ¥V , OCDIX », ¥ )3
1 13 1 1

i gyt A o
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7.3A

FIX_ROLL:
PROGRAM;
DECLARE COUNT INTEGER INITIAL(O):
DECLARE INTEGEM,
1, ROLLL, ROLLZS
rOLL:
PROCEDURE ASSIGN(A);
DECLARE A INTEGER;
A 3 TRUNCATE(6 RANDOW o 1)}
CLOSE WOLLS
DOFCR Iz 1 108
0O UNTIL ROLLY » ROLL2 7}
COUNT 3 COUNT o 1}
CALL ROLL ASSIGN(ROLLIY}
CALL ROLL ASSIGN(ROLL2)}
o3
0o
MRITE(S) COUNT;
CLOSE FIX_MOLL}

ITIXITITIAIIIZIXITIIIITIZIR

The solution in which ROLL is a function is clearly preferatic, because the code to
invoke ROLL is much simpler in that case.

In general, when a block is to produce as output a single value of any HAL/S type,
the FUNCTION form will tend to produce more comprehensible code than the
PROCEDURE form. This is because the calling sequence for a function mirrors
closely the mathematical notation for a function, and because often (as in this ex-
ample) use of the functional form avoids the introduction of *dummy"” variables
with no intrinsic meaning to the algorithm being implemented. In the procedure
form, these dummy variables must be used as ASSIGN parameters.
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Appendix C 27

onoe:
PROGRAM;
DECLARE SCALAR,
OROP_TIME, BOUNCE_YINE}
OECLARE SCALAR INITIALLO),
TINE, WONIZ OISTI
DECLARE MEIOMT SCALAR INITSALIL10)}
QICLANE MONIZ_SPLI0 CONSTANTIG)]
OECLARE © CONSTANT(32);
DECLARE T INTEGEIN:
REPLACE NUMBER_OF _BOUNCES BY “10™}
TING_10_OROP:
FUNCTION(N);
OECLARE M SCALAR}
RETURN SQRYIZ N 7 8)3
CLOSE TINE_TO_DROP;
HORIZ_MOTION!
PRCSECUNLIT) ASSIONINDG
DECLARE SCALAR,
T W3
M=o NORIZ SPRIC 11
CLOSE AONIZ_MOTION:
souneces
PROCEOURE ASSTIONIM, T)i
OECLANE SCALAR.

M T
LIS 1]
T e QAT N/ @)}
CLOBE DOUNCE!

0O FOR I 5 | TO MMSIR_OF_DOUNCES]
DROP_TING * TINE_YO_DROPINEISHT)S
CALL NORTZ_MOTIONIDROP_TINE ) ASSIGNINORIZ_DISY)I

TInt s TINE o UROP_TINLS

MRITRES) “BOUNCE®y I, *TINE . TINE, ‘MORIZONTAL DISPLACEINENT', WORIZ_DISY:

CALL BOUNCE ASSTSM(HETENT, BOUNCE_TING)}
CALL HORIZ_MOTION!BOUNCE_TINE) ASSTIONINONIZ_DIST)I
TING » TINE + BOMCE TINS
»o;
CLOSE DROP;

[ R PR NP
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B

FTXIJIIIZIXAZITIIXIXIXIZIIMNIEIIZIXIIIIT

SINPSON:
PROGRAM;
DECLARE SCALAR,
INTTIAL_VALUE, FINAL_VALUE, OLD_APPROX, NEN_APPROX. POINT;
DECLARE SCALM ,
DELTA. EPSILON, A, B, C, D3
soLY:
FUNCTIONIX) SCALAR;
DECLARE X SCALAR;
3 H
RETUPN AX ¢ B X +CXo0;
cLost soLY;
OLO_APPROX, NEN_APPROX 3 0;
READ°S) 4. B, €, O, INITIAL_VALUR, PINAL_VALUE. CPSILON}
DELTA = ¢FINAL_VALVE - INITIAL_VALUL) 7 §;
0O UNTIL (NZW_APPROX - OLO_APPROX) < EPSILON;
OLO_APPROX = NEW_APPROX;
NEM_APPEOX s POLY( INITIAL VALUE) o POLY(PINAL_VALUE)S
00 FOR POINT » INITIAL_VALUL o DE.TA TO FINAL_VALUE - {OSL/A / 2) BY DELYA}
NEN_APPROX & NIN_APPROX ¢ 2 POLY(POINT);
0o;
NIN_APPRCX = NEM_APPROX DELTA / 23
OELTA » DEILYA / 2
0o
MRITECA) NEM_APPROX:
CLOSE SInPsON;

'Y
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DROP:
PROGRAM;
DECLARE SCALAR,
DROP_TIME, BOUNCE_TIME:
DECLARE SCALAR INITIALLIO},
TIME, HORIZ _DISY;
DECLARE HEIGHT SCALAR INITIAL(110);
DECLARE HORIZ_SPEED CO .STANT(#);
DECLARE 6 CONSTANT(3Z);
DECLARE I INTEGER:
RZPLACE NUMBER_OF_BOUNCES BY *10";
TIMF_TO_DROP:
FULCTION(K);
DECLARE H SCALAR;
RETLRN SCRY(Z H 7 G);
CLOSE TIME_TO_DROP;
BOUNCE
PROCEDURE ASSIGN(H, T);
DECLARE SCALAR,

Ky T}
H = .75 H;
T 8 SQRT(2 N 7/ G);
CLOSE BOUNCE:

00 FCR I = 1 TO NUMBER OF BOUNCES - );
DROP_TIME ® TINE_TO_ODROPINEIGHT);
HORIZ OIST = HORIZ DIST + HORIZ_SPEED OROP_TINME;
TIHE = TIME ¢ DROP_TIME;
WAITE(6) *BOUNCE®s I, ‘TIME', TIME, 'HORIZONTAL DISPLACEMENT', HORIZ DIST;
CALL BOUNCE WSSIGN(HEIGHT, BOUNCE_YIME);
HORIZ_DIST = HCRIZ OIST + HORXZ_SPERD BOUNCE TIME;
TINE = TIME ¢ BOUNCE_TINE:

END;

OROP_TIME = TIME_TO_OROP(MEIGHT);

HOR1Z DIST = NORYIZ_DIST + NORIZ_SPEED DROP_TINME;

TIME = TIME + QROP_YIME;

WRITE(6) 'BOUNCE®, I, °*TIME', TIME, 'MORIZONTAL DISPLACEMENT', HORIZ _DI9T;
CLOSE DROP;
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Solutions

There are several advantages to taning 1O channels

3]

M

A

1t several channels are m use, piving them descriptive names makes it clearer
what any pasticntar £ O statement s domg,

Reterences to REPLACE macton are collected in the cross referene table, allow-
g all 1O tatements (o be townd gquivkly and castly,

104 becomes necessary to reassign a channel, the channel munber need only be
Changed once, e the REPLACE statement, and all b O statemients, reterenang
that channel will antomatically be changed

Phe exprossions am the st ate evaluated one by one, atd data ttems comverted o
chatacter stang statdand externat totmat Phese stings are then assembled ito fines
and tansnutted woan anplementation depemdent fashion to the output device asse.
crated with the chantel number specified i the WRETE statewment,

Anv legal HAL S expression may appear i a WRETE datement. Fhere are ao restne
ties wWhatwoever on outpat.

a}

M

a)

1}

Land §,

[ AT

Fist, the thiee matrces i MAT ARRE will be printed, then the three matrees
mMAT ARRY

Fhie casiest way (o do tis s with oo

DO FOR TEMPORARY 1 = 1 TO 3,
X FOR TEMPORARY ) - 1 TO O}
WRITEWO) MAT ARRISU LS TARCOIMAT ARRMT VY,
£ND,
WRITE(G) SR,
END,

Tt could also be done with a single WRLTE statement

WRETE(O) MAT ARRISCO LS PARCOIMAT ARRISCE T USRINCH,

COLUMNCDMAL ARRIME 2O TARQMIMALT ARRISUL 298K,
COLUMNCDLMAT ARRIEST 3L TABLOIMALT ARRISUE I SRR,
COLUMNUDMAY ARRES D TRLTARCOIMAT ARRISY LMSKIRD,
COLUMNUDMAT ARRINY L9, TARCUOMAT ARRISC D VSKIMD,
COLUMNUDIMAY ARRISG WO PARCOIMAT ARRISL M SKIY,
COLUMNCDMAT ARRISC L2 TABCLXOIMALT ARRISR 1 OSKINY,
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Appendix ¢ C-31

COLUMN(1)MAT_ARR1S$(3:2,*).TAB(20)MAT _ARR2$(3:2,*).SKIP(1),
COLUMN(1) MAT_ARR!$(3:3,*) TAB(20) MAT _ARR2$(3:3,%),

8.2
b
2) ac¢
3 d
4) ¢ (paged files only)
5) ae
6) none of a-¢; overrides the default SKIP(1)
e
8.3A
a) INTS = (8.7.7); SCALS

(-1,225.4)
(7.2,0.0
(2.49.,0,2.51)

b) INTS = (0,1,1); SCALS
¢) INTS = (2,1.3); SCALS

8.3B

Change the READ statement to:

READ(S) COLUMN(8),INTS,SKIP(1),COLUMN(8),SCALS;
8.4A

All are legal character subscripts. Only a, b, ¢, and ¢ are legal vector subscripts;
the others have partition sizes not computable at compile time.

8.4B
The output will be similar to this:
ABC ABCABC
123AB  BC456
1223ABC456
ABCABC ABC
8.4C
All the expressions listed are true.
8.5.1A

Only character strings may be read using the READALL statement.
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8.5.1B

: All characters on the input file are retrieved by the READALL statement. no matter
whazt they arc. Character strings to be input using the RFE A D statement must be sur-
rounded by single quotes, which are not placed into the target variable. Further-
more, single quotes represent themselves in RFADALL input, while they must be

-2
-4

8A

represented by a pair of quotes in succession in READ input.

WUIM OIMIZIMIAIMIT BIMIIMIIMIMITIIIITIIIIZIIR

ZIZT wIxm™m

REVERSE:
FROSRAM:
DECLARE ARPAY(5) CHARACTER(S),
CHAR_ARR1, CHAR_ARRZ;
DECLARE X INTEGER;
REV:
FUNCTIONIC) CHARACTER(S):
DECLARE C CHARACTER(®);
DECLARE CHARACTER(8),
CTEMP, CHAR_REV:
DECLARE INTEGER.
1. 4
.

’ »
CHAR_REV, CTEMP = C3§

’
IF CTEMP = '* THEN
RETURN *°*3

.
L = LENGTHICTENP);
DO FOR I = 1 TO Ls

L] )
CHAR_REYV = CTEMP i
I Lel-1

END;

’
RETURN CHAR_REV;
CLOSE REV;

. *
READ{5 Y (CHAR_ARR1 ). [CHAR_ARRZ 1}
DO FOR X = 1 T0 §;

’ L]
CHAR_ARR1 = TRIMICHAR_ARR1 );
X: X

. .
CHAR_ARR2 = TRIMICNAR_ARRZ )i

H X:

L] »
WRITE(&) COLI™NIS), REVICHAR_ARR1

! .
CLOSE REVERSE;

Xz

1] .
)» COLUMNI1S), REVICHAR_ARRE: )}
X

PRRt
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DECODE_NAMES:
PROGRAR;
DECLARE NAMES ARRAY(50, 2} CRARACTER(1S);
DECLARE INLINE CHARACTER(80);
DECLARE I INTEGER;
REPLACE NO_OF_NANMES RY "S0";

.

INLINE = *°5

00 FCR I = 1 TO NO_OF_NAMES;
CALL GET_NAME(I);

’
IF NAMES z 'S' THEN
T,2:1

1 1 onarEs

I, 1,23

’
WRITE(S) NAMES

*
GET_NANE:
PROCEDUREIN);
DECLARE INTEGER,
Ny K

.
IF INLINE = ** THEN
CALL GET_LINE;

’
K = INDEXCINLINE, *,*);
IF K = 0 THEN

»*
CALL FIRST_AND_LAST(INLINE, N)3
ELSE
0o;

*
CALL FIRST_AND_LAST(INLINE s N)3
1 TO K-1

L] .
INLINE * TRIM(INLINE N
Ks1 7O &

END:
FIRST_ANO_LAST:
PROCEDURE(C, N)}
DECLARE C CHARACTER(},
N INTEGER,
1 INTEGER:

»
I = INOEXIC, * ')}
. +
] L P
Nult 17011

L] »*
NAMES = C H
N, &1 s} TO®

CLOSE FIRST_AND_LAST:
GET_LINE:
PROCEOURE

Al
READALL{S) INLINE;

’ »
INLINE = TRIM{INLINE)}
CLOSE GET_LINE;
CLOSE GET_NAMES
CLOSE DECODE_NANES:

R APPSR P A
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8C

NUMZER_TO_ENGLISH:
PROCRA™
DECLARE INTEGER,
No M. T, WS
DECLARE CHMARACTER(301,
LEFY_PART, RIGNT_PART:
DECLARE TENS ARRAY(O) CRASACTERLT) INITIALL'TEN®, 'TWINTY'. ‘TNIRTY', ‘FORTY', ‘FIFVY', 'SIXTY’,
PSEVENTY'. "LIGHTY', 'NINETY').
OCCLARE TEENS AFRAY(O) CNAQACTER(®) INITIALC TLEVEN', "THILVE's 'THIRTLEN', "FOURTEEN'. 'FIFTEEN
L, USINTEEN', *SEVENTLEN', 'EICHTEEN'. 'NINETEEN'):
DECLARE UNITS AKQAY(9) CHARACTER(S! INITIALC'CHE s 'TWD', *THREE's "FOUP', 'FIVE', '$IX', 'SEVIN'
o TEICNTC, CNINE' Y
READIS) N}
IF N =0 TNER
oo.

.
LEFT_PARY = **;

RIGNT_PaRT . 2RO':
o
st
00:
W * DIVIN, 3000
T - 0 (REMAINDER(N, 1003, 10):
U T FERAINDER(N, 1013
IF M 0 THIN

WZIMIIIIXIIIAMIMITIAIIIITIIIIIZIR

. .
LEFT_PART = UNITS Il * HUNORED °*3
'

L8E

.
LEFY_PART z **}§
IF U2 0 NN

. .
RIOGHT_PART » TINS |

eLse
[H
IF T > ) THEN
. . .
RIGHT_PART = TINS (IEREARRIINT 5 8 £ BN
T

(‘B

ELSE IF T 2 1 THEN

. .
RICHT_PART & TEENS

nse
[ .
RIGHT_PART « UNITS
u:

ND;
0o

IIMIT @wZITMmE AZ™T VWEIMAIIT BIMmMIJFMI

.
WRITE(S) LEPT_PamY ) ncu;,unn
cLose:

T WS

3
[t

-
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R T T

STRUCTURE X:
I Al,
2 C1 VECTOR,
2 DI MATRIX,
| Bl,
2 El VECTOR,
2 FI MATRIX;

STRUCTURE Y:
1 A2 SCALAR,
1 B2,

SCALAR;

Solutions

2 E2 ARRAY(S) VFCTOR,
bi

a) TEST DATA

b) TFST_DATA.LM.A
TEST DATA.LMB.VI
TEST_DATA.LM.B.V2
TEST_DATA.LN.AB
TEST _DATA.LN.A.VI
TEST DATA.LN.C
TEST DATA.LJA
TEST _DATA.LJB.VI
TEST_DATA.L)B.V2
TEST_DATA.LK.A.B
TEST_DATA.LK.A.VI
TEST_DATA 1.K.C

T

/

<

\
AV

[
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/
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¢) STRUCTURE DATA:
1L,
2 M,
3 A INTEGER,
3B,
4 VI VECTOR,
4 V2 VECTOR,
2N,
3 A,
4 B INTEGER,
4 V1 VECTOR,
3 C SCALAR,
11
2
INTEGER,

3A
38,
4 V1 VECTOR,
4 V2 VECTOR,
2 K,
3 A
4 B INTEGER,
4 VI VECTOR,
3 C SCALAR;

d) All of the assignments shown are legal.

STRUCTURE MINOR:

! V VECTOR,

| T SCALAR;
STRUCTURE MAJOR:

1 Xt MINOR-STRUCTURE,

1 X2 MINOR-STRUCTURE,

1 X3 MINOR-STRUCTURE,

| X4 MINORSTRUCTURE,

I X5 MINOR-STRUCTURE;
DECLARE DATA MAJOR-STRUCTURE;

REAIXS) DATA;
CALL PROCESS(DATA);

The procedure PROC SS must be modified to accept a MAJOR-structure as input
instead of the ARRAY(2) it originally took.

[

BT



STRUCTURE MINOR:
! V VECTOR,
i T SCALAR:
DECLARs< DATA MINOR-STRUCTURE(S),

READ(S) DATA:
CALL PROCESS(DATA):

Appendix C C-37

Now PROCESS must be changed to accept a S-copy MINOR-structure as its argu-
ment. The data is stifl read in the same order as before.

a)
b
©)
d)
e)

a)
b)
)
d)
e)

B 9.3A
9.3B
]
9.3C
- F) ) 4
s
9 A
.8
- ;
3
i
o © e emm———
3
o
k.

A$(25;) or AS2S type: AI-STRUCTURE
A.BS(*3) type: ARRAY(100) INTEGER
A.C$(10 TO 20) type: ARRAY(11) SCAI AR
A.D$(75 TO 8S) type: ARRAY(11) VECTOR(6)
ADS(1:D type: SCALAR

N | NEAN:

" | prosman:

n STRUCTURE PERSON:

" 1 SS INTEGER DOUBLE,

" 1 SALARY SCALAR,

" 1 JOB_CODE INTEGER,

" 1 PNAHE CHARACTER(32)}

: DECLARE COMPANY PERSON-STRUCTURE(100):

*

N READ(S) (COMPANY);

" WRITE(G) SUML {COMPANY SALARY)}) 7 1001

N | cLosE MEAN:
No: X.E.F has the RIGID attribute; Y does not.

Yes.
Yes,
Yes.
Yes.
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9.4B

9A

a) The 20th copy of A. type: A-STRUCTURE
b) The 10th and 11th copies of A. type: A-STRUCTURE(2)
¢) C from the first copy of A. type: INTEGER
d) D from the 4th-6th copies of A. type: ARRAY(3) VECTOR(6)
¢) The 4th-6th components of D
from all copies of A. type: ARRAY(20) VECTOR(3)

Structures allow the programmer to organize data oi’ mixed types into one logical
unit that may be input, output, assigned, and passed as a parameter. When a struc-
ture is passed as a parameter, overhead is saved, as all the components of the struc-
ture became available to the called procedure or function without being passed in-
dividually as separate parameters.

The use of structures also allows the transfer of an aggregate of assorted data in a
single FILE 1/0 statement. In 1/O contexts, multiple<copy structures are particularly
convenient for reading or writing large blocks for the sake of efticiency.

a -



g

&
-]

T @ Xm alm wIMIMIT VI AIN O3 O™ MIIIIIZIIIITIIIXIITIITIIX

Appendix C (-39

sesT_ont:
PROGRAM:
STRUCTURE ITEM_DATA:
1 VEC vECTCR,
1 TINETAG SCALAR:
STRUCTURE UNLIT DATA:
1 ACCTL ITEM_DATA-STRUCTURE,
1 VEL JTEM_DATA-STRUCTURE,
1 PITCH ITEM_DATA-STRUCTURE;
STRUCTLUPE BEST!:
1 BEST_ACCEL ITEM_DATA-STRUCTURE,
1 BEST_VEL ITEM_DATA-STRUCTURE,
1 BEST_PIYCH ITEM_DATA-STRUCTURES
DECLAPE BEST_DATA BEST-STRUCTURE;
DECLARE SYSTEM _DATA UNIT_DRATA-STRUCTUREL )
nIo0LE:
FUNCTIONIDFU) ITEM_DATA-STRUCTURE:
DECLARE DFU ITER_CATA-STRUCTUPE(3);
IF OFU.TIMETAG 3 MIDVAL(OFU.TINETAG , OFUL.TIMETAG . DFU.VIMETAJ | THEN
1 I

1 :

.
RETRN DFU
1
IF OFU.TIMETAG  * MIDVALIOFU.TIMETAG ., DFU.TIMETAG , OFU.TIMETAG ) TNEN
2 1 t 4] 3
.

RETURN OFV

t43
.
RETUAN DFU
3
CLOSE mI00il:

L
READIS) {SYSTEM_DATA);
.

* [
BESY_DATA.CESY_ACCEL = MICOLE( {SYSTEM_DATA.ACCEL) )i
.

. . .
BLST_DATA BEST vEL * MICOLEC {SYSTRM_DATA.VEL] N
.,
. . .
SUST_OATA.BEST_PITCH » MIDDLE«{SYSTEM_DATA.PLITCH) 1§

CLOSE BesT ont;

/8 DATA FRQOM UNIT o/

B e i B .
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10.1A

10.1B

10.1C

10.1D

Solutions

Control falls through to the statement following the ON ERROR statement, unless
the ON ERROR statement has:

1) caused 2 GO TO or RETURN statement to be executed, or

2) specified SYSTEM or IGNORE, in which case either control retusns to the pro-
gram at the point where execution was interrupted, or the program terminates,
depending on the particular error.

If the error should occur after controt has left the loop, an unexpected transfer of
control into the loop will occur, potentially causing disastrous results since loop vari-
ables may have unusaal values, and TEMPORARY variables may even have been re-
defined since leaving the loop.

The compiler normally enforces a ban on branching into DO . . . END groups. In this
case where the compiler is unable to do so. the programmer should follow the same
course.

1) SYSTEM: If no ON ERROR statement is active for the current error, or if the
active one is ON ERROR SYSTEM, the standard action, if any. is taken and an
error message is sent.

2) IGNORE: If an ON ERROR IGNORE statement is in effect for the error in
question, the standard fix-up is taken and no error message is sent.

3) If an ON ERROR statement defining a user action is in effect for the specified
error, then the user code receives control without possibility of retuming to the
point where the error occurred. No error message is sent.

Error Specification Precedence
ERRORS(m:n) | first
ERRORS(m:) M

or
ERRORS(m) 2
ERROR 3 last

ot e
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10.2A

An error handler may be deactivated:

3]

* .

k)

-~

10.28
a)

b)

10.3A

when flow of coatrol leaves the He L » -, .oung the handler,

whe it 1s superseded by anoth. « o o uder, and

when an OFF § RROR stater, 3 7 5be sume form is executed.

Appendix C C-41

All three error handlers an: st active: both OFF ERROR statements were ig-

nored.

ON ERRORS(1.1) IGNORE, and ON ERRORS(2:) IGNORE; are still active.
The first OFF error statement cancelled the first ON ERROR statement, and the

second had no cffect.

The SEND ERROR statement is used:

1) to simulate the occurrence of system-defined crrors for testing, and

) to allow the user 1o define errors and write error handlers for them.

When an applicable error handler is found in the Jocal block, higher level blocks need
not be searched, as handlers in the calling blocks are overridden by the local handler.

10A
a)
b)
<)
d)

e)

1))
h)

»
k)
B

No message
Message
No mersage
No message
Message
No message
No message
Mesage
No message
Mesaage
Meuage
No memage

S e b o Sm  w n
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1L1A

1LiC

F.2A

11.28

11.2C

1. If several programmers are working on a single large project, it will probably be
convenient to assign them swparately-compilable sections of the program com-
plex.

2. In a multiprogramming environment where several PROGRAMs are te run con-
currently, there is no way to compile them ail in a single compilation step, 30 8
program coiaplex must be created.

3. If the overall structure of a program is fixed, but small sections are under-going
revision, separating those sections out as COMSUBs may allow those parts to be
revised and recompiled without requiring recompilation of the entire progran.

Just as if the COMSUB were an intemal procedure, the error environment of the
caller is searched for an applicable error handler, then thic environment of the caller’s
caller, and so on.

3) Compiling a COMPOOL resetves space for the va iables declared therein. Also,
in most implementations  template is produced whern the COMPOOL is com-
piled.

b) Ths COMPOOL template, when included in the compilation of another cempila-
tion unit, makes the variables declared in the COMPOOL known 1o that compila-
tion unit, without causing any space to be reserved for those varabl:s,

The SCALARs A and B can only be referenced inside the program P but outside the
FUNCTION block F. Inside of F, scoping rules will cause A and B to refer to the
loca!l INTEGER variables.

FILTER does not require any of the data in GNC_PDOL, so there is no need to in-
clude the template for GNC _POOL in the compilstion of FILTER.

If several compool templates are included in a single compili.c *n, names of variables
must be unique, because there is only one scoping level outside the main block of a
compilstion. Hence, it is in general desirable to give compool variabies unique
names, 50 that it is pomibie to refer 10 any compoul from any other compilation
unit if necessary.

< e camm



11.34

11.38

b)
<)
d)

a)

b)

a)

b)

v st < s cem s men - R

Appendix C C-43

A template for FILTER is needed in order to compile NAVIGATION, and with
this order of compilation, it would need to be hand coded.

In this case, CCNTROL needs the template for FILTER.
No template need be hand coded, as all will be available when they are needed.

This order of compilation is particularly inconvenient; all templates will need to
be hand coded.

1t 15 possible that the savings account for one 1D might be updated, then the pro-
cedure interrupt and another account updated, When control returned to the
first task, the updating of the checking account would then be done incorrectly,
transferring funds from one customer to another.

If SAVINGS and CHECKING are declared with the LOCK attiibute, and the
transfer is enclosed in an UPDATE olock, there is no possibility of an incorrect
transfer of funds as described above.

In this case, any interruption of an execution of AWARD _INTEREST by an-
other process that calls AWARD_INTEREST may cause either an error in up-
dating the account, or in logging the interest.

Make the procedure AWARD __INTEREST EXCLUSIVE. Then there is no possi-
bility that two processes will attempt to run AWARD_INTEREST concurrently.

o Y e g S af
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12.1B

12.2A

12.2B

122C

Solutioms

A 1 1 1 1 1 ¢

0 80 200 280 400 480 600 o680 800 880 1000 msec.

s 1 [1 [1 [

80 160 480 560 740 880
¢ 1 {] [1
0 160 320 680
N I [ 1] [ ]
0 80 280 360 560 640 840 920
N 0 ]l [
80 160 493 653 986
c [ ] [ 1]
160 240 740 820

SCHEDULE X PRIORITY(1). REPEAT UNTIL 3.5;
SCHEDULE Y IN 2.5 PRIORITY(2), REPEAT EVERY 1 UNTIL 6;

The AT clause allows a process to be scheduled at a definite, predetermined time.
The ON clause, on the other hand, allows a process to be scheduled depending on
occurrences of an unpredictable nature. Either one can be appropriate, deponding
on the desired elfoct.

Qis active only at B.

SIGNAL X; will cause X to become TRUE just long enough for all active event ex-
pressions referencing X to be evaluated. In particular, no code testing X as a
BOOLEAN variable wilt ever find it TRUE as a result of SIGNAL X;. The sequence
SET X; RESET X; will also cause X to become TRUE, then return tu FALSE, but if
in the meantime the process oxecuting the SET and RESET statoments relinquishes
control, X will remain SET during execution of some HAL/S code, and may be
found to be TRUE if tested.
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12.2D

SCHEDULE X PRIORITY(1), REPEAT UNTIL TRAN2;
SCHEDULE Y ON TRANI! PRIORITY(2), REPEAT EVERY | UNTIL 6.

12,26 :

© w2 EN

a) Unlatched; there is no need to specifly LATCHED, so take the default.
b) Latched; it is not possible to signal several events simultaneously.

¢) latched; an unlatched event will always test FALSE.

d) Latched; RESET is illegal for an unlatched event.

¢) Unlatched: presumably the loop is to execute once for each event wransition,
which would probably not happen if the event were SET and remained on.

12.2F
SCHEDULE T ON MASTER PRIO(999) REPEAT:

T: TASK;
RESET COMPL.:
WAIT FOR “MASTER;
SET COMPL;
WAIT FOR MASTER;
CLOSE T,

i
123A
Pt
PROGRAN; ;
DECLARE DENOM INTEGER INITIAL(10); §
SCHEDULE T PRIORITY(999), REPEAT UNTIL 1; :
"

TASK; !
NAIT UNTIL 1 / DENOM; i
NRITE(S) RUNTINE: i
DENON = DENOM - 2} ;
IF DENOM < ) THEN :

DENON = 1} :

cL08e T3

CLOSE P;

.
-
ZZTXTITZTIIZTIIIXIXZX

1238

. Unless something causes P to exit from the DO WHILE TRUE L. op, CANCEL P will
40 have no effect.

. 1€ X is necessary to keep P as it is, it can be stopped with:
TERMINATE P,

rs However, it is safer simply to remove the DO WHILE TRUE; and END; statements
. . from P, and derive the same effect from writing:
v

SCHEDULE P PRIORITY (100), REPEAT;

.y
P

L

L3
<
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12A

FAIZIIZIZIZIIIZIZTIZTIZIAIZIZIIIZIZIZIATITIIAZITIIILIZITIIIZIIIIIIAIRITIIZIZIIZIIIIZIIR

P
PROGRAN;
DECLARE VECIOR,
POSITION, ATTITUOE, VELOCITY;
DECLARE SCALAR,
PITCH_COMMAND, ROLL_COMMAND
DECLARE DESTINATION VECTOR:
DECLARE ARRAY(AY,
SENSED_ATTITUDE VECTOR .
SENS{D_VELOCITY VECTOR:
INPUT_PROC:
PROCEGLRE :
CLOSE INPUT, PROCS

CLOSE ELEVON_CNOS;

TELEMETRY?

FPROCEDURE

CLOSE TELENETRY;

RUODER_CrOS:

PROCEDURE

CLOSE RUDDER_CMDS:

GUIDANCE :

PROCEDURE ;

CLOSE GUIDANCE;

FC_GAINS!

PROCEDURE ;

CLOSE FC_GAINS;

NAVIGATION:

PROCEOL.

CLOSE NAV.GATION:

DISPLAY_UPOT:

PROCEDURE;

CLOSE DISPLAY_UPOT;
SCHEDULE T1 PRIORITY(A), REPEAT EVERY .1:
SCHEDULE T2 PRIORITY(3), REPEAT EVERY .2}
SCNEDULE T3 PRIORITY(2), REPEAT EVERY .4:
SCHEOULE T4 PRIORITY(1), REPEAT EVERY .8;

n:

TASK}
CALL INPUT_PROC;
CALL ELEVON_CMOS;
CALL TELEMETRY;

CLost N

T2

TASK:

CALL MUDDER_CrOS:
CALL CUIDANCES
CLOsE T2:
w
TASK:
CALL PC_GAINS;
cL0st T3
T4t
TASK}
CALL NAVISATION
CALL OISPLAY urOT)
CLOSE Tel
CLO8T Fem;

/% SCALE AND FORNMATY DATA FROM SENSORS »

/% COMMAND AEROSURFACES o/

/% DOMNLINK STATUS VARTABLES »

/® CONTROL YAM AXIS w/

/% COMPUTE DESIRED PLIGHT PATH &

/% COMPUTE CONTROL LAW GAINS »

/7% COMPUT REAL POSITION AND VELOCITY @

/% REFRESH CRY w/

T v————————— -
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s
PROGHAM;
DECLARE VECTOR,
POSITION, ATTITUDE. VELOCITY:
OECLARE SCALLR,
PITCN_COMMAND, SOLL_COMMAND;
OECLARE OESTINATION VECTOR:
DECLARE ARRAYIG),
SENSTD_ST1ITUDE VECTOR,
SENSED VELOCITY VECTOR:
CECLARE T1_DONE EVENT:
TuBUT_PROC:
PROCEDLRE
CLOSE INPUT_PROCS

CLOSE ELEVON_CroS;

TELENETRY

PROCEOURE S

CLOSE TELEMETRY;

RUDOER_CMDS:

PROCEDURE §

CLOSE FUDDER _CrODS;

GUIDANCE:

PROCEOURES

CLOIE GUIDANCE;

1C_GAINS:

PROCEZDURE ;

CLOSE FC_GAINS:

NAVIGATION:

PROCEOURE ;

CLOST NAVIGATION]

DISPLAY_UPOT:

PROCEOLRE

CLOSE DISPLAY_UPOT;
SCHECULE T1 PRIORITY(1), REPEAT:
SCHEDULE TT PRIORITYIZ), REPEATS
SCHEDULE T3 PRIDRITY(3), REPEAT;
SCNEQULE T4 PRIORITY(4), REPEAT;

n:

TASK:
CALL INPUT_PROC:
CALL ELEVON_CHDS;
CALL VELENETRY;
SIGHAL T1_OONE:

cLose 113

T2:

TASKS
NALY FOR T)_DONE;
HAIT FOR T1_DONE:
CALL MUODER_CHOS;
CALL SUIDANCE;

cLoSE T2:

13:

Tasx:
00 FOR TEMPORARY £ v 1 TO &
MAIT FOR T)_DONE:

0o
CALL FC_GAINS;
cLosE 13;
T4
TASK:
DO FOR TEMPORARY T = 1 TO 8;
WAIT FOR T1_DONE;

i
CALL NAVIGATION:
CALL OIsPLAY uroT;
CLOSE T3
CLOSE PN

/% SCALE AND FORMAT DAIA FRONM SENSORS =/

/8 COMMAND AEROSURFACES »/

/% DOUNLINKG STATUS VARIABLES =,

7% CONTROL YAW AL1S &/

/% CONPUTE DESIRED FLIGHT PATH &

/% COMPUTE CONTROL LAW GAINS %y

/% COMPUTE REAL POSITION AND VELOCITY %/

/e REFRESH CRT =/

This solution guarantecs that the various tasks will never be executing any of their
procedures simultancously, thus avoiding the need for UPDATE block protection of
any shared variab'e, providing that none of the blocks will contain WAIT statements.
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13.1A

13.1B

13.1C

Solutions

A) IF FLAGS AND BIN‘110000000000° = BIN‘110000000000".
B) IF FLAGS AND BIN‘010101010101" = BIN‘000000000000".

C) IF (FLAGS AND BIN‘111111000000° = BIN‘000000000000’) OR
(FLAGS AND BIN'000000111111" = BIN‘000000111111°)

D) IF FLAGS = BIN‘101010000010".
E) IF FLAGS AND BIN‘111010000011° = BIN‘101010000010".

FUNCTICN(ENTRY) INTEGER}
DECLARE ENTRY INTEGER:
RETURN INTEGER(TABLE o3

OXV(EITRY,4):6 AT 6 MOD(ENTRY,4)e)

SLOSE GET_BITS:
CLOSE EXERCISE_C}

n [ rLae:
M | FUNCTIONGB) BIT(22);
] CECLARE 8 BIT(12):
" DECLARE FLIPPED BIT(12);
" DO FOR TEMPORARY X = 1 YO 12;
£
" FLIPPED =B  ;
s X 13X
" END;
E
" RETURN FLIPPED;
M | CLOSE FLIP;
n | Exercase_c:
n | PROGRAM;
" DECLARE TABLE ARRAY(50) BIT(24)}
N | seT_sIvs:
M | PROCEDURECENTRY, VALUE);
" DECLARE INTEGER,
" ENTRY, VALUE;
€
] LE s BIT (VALVE);
s DIV(ENTRY,4):6 AT (¢ MODIENTRY,8)e1) 6 AT 8-5
M | cLose SET_BITS;
M | GET_B1TS:
[}
"
€
N
s
[
"
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13.1D

13.1E

13.1F

13.2A

NORMAL ¢
FUNCTIONCUNNORM) BIT(32)3

DECLARE B BIT(32)}
DECLARE COUNT INTEGER;

IF UNORN
’

B = UNNORM;

8
ZO AT ¢

= BIT
TAT 2 7 AT

RETURN it
CLOSE NORMAL;

TIMIT UIM BIEM AXIMIMI UIMIIIIX

DECLARE UNNORM BITI32);

= NEX'000000° THEN
32

RETURN HEX'00000000°;
DO FOR COUNT = 1 TO 6 MHILE B
4 AT O

= BIT(SHLOINTEGER(®
20 AY

® NEX'0‘}

I H
L]

} =10
2

Appendix C C-49

OUTPUT = |ES INTEGER(INPUTS(4 AT 1)) + 1E4 INTEGER(INPUTS

(4 AT S» +

IE3 INTEGER/® UTS$(4 AT 9) + 1E2 INTEGER(INPUTS

(4 AT 13

1E! INTEGER(INPUTS(4 AT 17) + INTEGER(INPUTS

(4 AT 2D)

OUTPUT = INTEGER(BITS$(®HEX) (CHARACTERS(@HEX) (INPUT))):

1) Partitions of bit strings.
2) Coiamns of a matrix.

3) A structure node with copiness,
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13.2B

1) Yes, if a name variable points to some variable in an outer code block and a vari-
able is declared in an inner code block with the same identifier as that name
variable points to, the outer variable can still be referenced.

b) No, need more information than the address which is all the name variable
allows.

¢) Yes, name variables allow sharing. Several name variables can point to the same
data item.

d) No, it is possible to go up and down name pointers but not reference an absolute
address,

¢) No, name variables can only point to data of the same type they were declared

13.3A

STRUCTURF LOOP:

I VALUE INTEGER,

1 NEXT NAME LOOP-STRUCTURE;
DECLARE CIRCLE LOOP-STRUCTURE;

NAME(CIRCLE.NEXT} = NAME (CIRCLE):

13.3B

STRUCTURE TQE:
1 TIME SCALAR,
I ACTION NAME ACTIONS-STRUCTURE,
1 NEXT NAME TQE-STRUCTURE;
STRUCTURE ACTIONS:
1 ACTION INTEGER,
1 AFFECTED-PROCESS NAME PROCESS CONTROL-STRUCTURE,
I NEXT NAME ACTION-STRUCTURE;

line 28

DECLARE NAME TQE-STRUCTURE, NEWTQE, ENT;
DECLARE NAME ACTIONS-STRUCTURE, NEWACT, ENTACT;

NEWTQE.TIME = WHEN;
NEWACT.ACTION = WHAT;
NAME(NEWACT.AFFECTED_PROCESS) = NAME(PROCNAME);

after
line 37

NAME(ACTV _Q.ACTION) = NAME(NEWACT);
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after
line 40

IF ENT.NEXT.TIME = NEWTQE.TIME THEN DO;

IF NAME(ENT.ACTION) = NAME(NULL) THEN DO;
NAME(ENT.ACTION) = NAME(NEWACT);
RETURN;

DO UNTIL NAME(ENTACT.NEXT) = NAME(NULL)

NAME(ENTACT) = NAME(ENTACT.NEXT);

glxg,ﬁ(ENTACr .NEXT) = NAME(NEWACT);
RETURN;
after 44
NAME(ENT.ACTION) = NAME(NEWACT),
after 50

NAME(NEWTQE.ACTION) = NAME(NEWACT);
13.3C

If PCB is first or last in the ready queue, the code to remove PCB from the ready
queue will not work. Tu avoid the difficulty, rewrite STALL as follows:

STALL: PROCEDURE ASSIGN(PCB);
DECLARE PCB PROCESS_CONTROL-STRUCTURE;

Remove from ready queue

e Ko Ke]

IF NAME(PCB.LAST)=NULL THEN NAME(PCREADY)=NAME(PCB.NEXT);
ELSE NAME(PCB.LAST.NEXT)=NAME(PCB.NEXT);

IF NAME(PCB.NEXT)=NULL THEN NAME(PCB.NEXT.LAST)=NAME
(PCB.LAST);

annn

Add to stalled queuc: same as in the text

NAME(PCB.NEXT) = NAME(STALLED);
NAME(STALLED) = NAME(PCB),
CLOSE STALL;

RN RS
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13A

ana

LR e o gy

PC_ENQUEUE: PROCEDURE ASSIGN(PCB);
DECLARE PCB PROCESS_CONTROL-STRUCTURE;
DECLARE PCPTR NAME PROCESS_.CONTROL-STRUCTURE;

IF NAME(READYPC) = NULL THEN DO;
NAME(READYPC) = NAME(PCB);
NAME(PCB.LAST), NAME(PCB.NEXT) = NULL;

RETURN;
END;

NAME(PCPTR) = NAME(READYPC);
DO WHILE NAME(PCPTR.NEXT) = NULL;

IF PCPTR.PRIORITIE<PCB.PRIORITIE THEN DO;
NAME(PCB.LAST) = NAME(PCPTR.LAST);
NAME(PCB.NEXT) = NAME(PCPTR);

IF NAME(PCB.LAST) 1= NULL THEN
NAME(PCB.LAST.NEXT) = NAME(PCB);

RETURN;
END;

NAME(PCPTR) = NAME(PCPTR.NEXT);

END;

PCB IS LOWEST PRIORITY: TAG ON END OF LIST

NAME(PCPTR.NEXT) = NAME(PCB);
NAME(PCB.NEXT) = NULL,;
NAME(PCB.LAST) = NAME(PCPTR);

CLOSE PC_ENQUEUE;

[*empty queue®/

PR
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REXCALC!
PROGRAM]
DECLARE INTESER DOUBLE,
INTL, INTRS
DECLARE INLINE CM. RACTER(80);
OECLARE PLUS BOOLE.N;
DECLARE K INTEGEN:

’
READALL(S) INLING;
’ ’
INLINE = TRIMCINLINE)}

[ ]
K = THOEXUINLING, *¢°)3
IF K >0 THIN
LIS = TRUE;
st
003

PWS = FALSE:

1]
K = INOEX(INLIME, *=°)3
:

.
INT1 = INTROER (837 (INLINE ni
0UBLE M 1 Y0 K-}

.
INTZ = INTEOER (817 (INLIE . m
WOBLE mEx K¢l TO ®

IF PLUS THEN
INT1 = INT1 ¢ INTR}
nse
INT] = INT - INTR}
MRITELG) INTY, CNARACTER 19ITLINTIII

CLOSR NEXCALCH

Appendix C C-53

T R WONih Rade b D n AT b D ek 4l

P

Gl L 155 1 D o b st U M L S N S Al



C-34 Appendix C

Solutions

14A A = ((B O)g_) *+ D)g3;

148

If the absolute value of the fraction in C is > 0.5, then the expression:

B=2(2 0O
will cause overflow; whereas
B=2 C@_‘ N

can never cause an overflow.
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ABS
ABVAL
ACCESS
ARTER
ALIGNED
AND
ARCCOS
ARCCOSH
ARCSIN.
ARCSINH
ARCTAN
ARCTANH
ARCTAN2
ARRAY
ASSIGN
AT
AUTOMATK

BIN

BIT
BOOLEAN
BY

CALL
CANCEL
CASE

CAT
CEILING
CHAR
CHARACTER
CLOCKTIME
CLOSE
COLUMN
COMPOOL
CONSTANT
Ccos

COSH

DATE
DEC
DECLARE

DEPENDENT
DET

DOUBLE

ELSE

END
EQUATE
ERRGRP
ERRNUM
ERROR
EVENT
EVERY
EXCLUSIVE
EXIT

EXP
EXTERNAL

FALSE
FILE
FLOOR
FOR
F.NCTION

GO
HEX

\F
IGNORE
IN
INDEX
INITIAL
INTEGER
INVERSE

LATCHED
LENGTH
LINE
LIUsT
LOCK
LOG

MATRIX
MAX
MIDVAL
MIN
MOD

Appendix D
HAL/S Keywords

NAME
NEXTIME
NONHAL
NOT
NULL

oCT
oDD
OFF
ON
OR

PAGE

PRIO
PRIORITY
PROCEDURE
PROD
PROGRAM

RANDOM
RANDOMG
READ
READALL
REENTRANT
REMAINDER
REPEAT
REPLACE
RESET
RETURN
REMOTE
RIGID
RIUST
ROUND
RUNTIME

SCALAR
SCHEDULE
SEND
SET
SHL
SHR
SIGN
SIGNAL
SIGNUM
SIN
SINH

Appendix D D-1

SINGLE
SIZE

sKip

SQRT
STATKC
STRUCTURE
SUBBIT

SUM
SYSTEM

TAB

TAN

TANH

TASK
TEMPORARY
TERMINATE
THEN

TO0

TRACE
TRANSPOSE
TRIM

TRUE
TRIUNCATE

UNIT
UNTIL
UPDATE
VECTOR
WAIT
WHILE
WRITE

XOR

pppmm————— A
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Appendix E
1/O With Formats

The ability 10 do FORMAT style }/O has been implemented in several HAL/S compilers

This is sn experimental festure of the language. ltvlﬂoulybeadoptedhlotbuw
HAL/S language sfter somw experience with jts usy.

This Appendix describes FORMAT 1/O as it is currently implemented. The reader
should keep in mind that FORMAT 1/C constructs are subiect to change.

E.1 YHE FORM OF READ AND WRITE STATEMENTS

The use of FORMAT: in READ and WRITE statements allow for more flexible Input/

Outprt operstions. FORMATs, however, may not be used with READALL or FILE
staterents.

Standard 1/O ‘was discuesed in Chapter 8. With FORMAT 1/0, a characier expression
following the keyword IN controls the formst of data:

WRITE(6) ELTNO IN ‘I4°, VALUE IN ‘F8.2";

The character expression has no special restrictions; it can be computed at runtime:

DECLARE FIELD-LENCTH INTEGER;
WRITE(6) (VARLLVAR2) IN ‘I' || CHARACTER(FIELD-LENGTH);

E.2 LISTS OF DATA ELEMENTS

The lest example shows how nne FORMAT character expression can control output
for ssveral elements. The list of clemonts is merely enclosed in parenthesis.

RE. O($; (V1,V2.CHY) IN ‘FB.2F10.3/A6";
is equivalent to:

READ(S) VI IN ‘F&.2°.V2 IN 'F10.3, SKIA!), COLUMN(1), CHI IN ‘A6’

A FORMAT cheracter expression is a list of FORMAT items separsted by commes or
slashes(/). A slosh is equivalent 1o SKIF 1), COLUMN(}).

There are two types of format items. 1/O conirol items ase the standard SKIP, LINE,

PAGE, COLUMN. AND TAB. They may sppess within FORMAT character expremions and
have theie normal HAL/S mesning.

.
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Other format items are summarized in the following table. More detail will follow.

Sample Sample Interpreted
{tem Use Example Output Input As
[ format INTEGFR IS pH¥E9? Bep42 42
F format SCALAR Fe.2 ¥98.67 98.672 Y8.672
K¥S867 98.67
E format SCALAR with E9.1 ¥-/1E-02 PB246E+14 | 24.6E+14
exponents
U format INTEGERSCALAR.| US pepo7 pppa2 42
or CHARACTER
A format CHARACTER A4 BABC BABC BABC
X format blanks on outpat, X2 (1] 9z skipped
skips on input
P format INTEGER and PANS= | ANS=-42E-8|-4.2E-8 -42E-8
| SCALAR $5.9°$$
Quote string | CHARACTER on “ANS=¢"'| ANS=¢ ABCDE skipped
output, skips on
input

When a data item is processed, the format character expression is scanned from left to
right until ar- {, F, E, U. A, or P item is found. Slashes, 1/O control, X items, and quote
strings are processed as they occur. The next data item is processed similarly, except the
scanning of the format character expression resuimes where it last stopped. Arrayed data
items are treated clement by element.

There are several features which make writing format character expressions easier. A
number may precede a format item to indicate repetitions:

‘ST'R.2" IS THE SAME AS ‘F8.2F8.2 F8.2,F8.2 F8.2°

Parenthesis may be placed around several format items and a repetition given tor the entire
expression:

‘2(E16.7/) IS THE SAME AS ‘El6.7/El6.7/

If the end of a format character expression is reached and more data items remain, there
are two possibilities.

1. If the format character expression cuntains no parentheses, scanning resumes from
the beginning.

2. Otherwise, scanning resumes from the open parenthesis corresponding to the last
closed parenthesis. A repetition is taken into account if present.

For example:

WRITE(6) ARRAY-X IN ‘10F8.2/";
$(1 TO 100)

produces 10 rows of 10 figures each.

e
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E.3 1 FORMAT ITI'MS

1 format gems are used for INTFGER 1O They have the tormre
In

where o s an unsigned positive integer geving the field leagth, Implicit INTPGER'SCALER
conversion s allowed. Vanables or expressions which are of type CHARACTER or BT mav
nof be handled with | FORMAT.

For WRETE statements, a sign is printed only it the number is negative. The number s
right-pustitiod in the output Gield, It the output Gield is too small, astedishs are printed and an
error is sent, For example,

DECLARE A INTFGER INITIAL(D,
WRITE(0) (A A+8A LAY IN 12

produces B L2 with an overtlow ervor.

E4 F AND F FORMAT ITEMS

F FORMAT items are used for decimal quantities. F FORMAT items are used for deei-
mal quantitios written w seientific notations (1 o., with exponeats),

The following four forms are allowed:

Fa Fou
Fn Fad
n s an unsigned positive integer giving the fiend length, O s an unsigned posttive integer

giving the number of decimal places, Only INTEGER or SCALAR variables or expressions
van be read o written with F amd E FORMATx.

For READ statements, there is no ditference between F and F FORMAT items. The
iaput may be signed. I iv containg a decimal, this overrides the d specification. Otherwise,
1 gives the aamber ot decimal digits.

REFAD(S) A IN ‘Fo X'
interprets:

PI2A as 1204
I ay 10N
CNPRERFTEN AT
An oxponent may be supplied of the forn:

Btk
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where cither Foor ¢ may be onutted. Blanks are allowed preceding the sign, the first digit, E,
t, and the first digit of the exponent.

For WRITFE statements with ¥ FORMAT, the string printed is

asaa.bbb
——
m n

nas the second number in the FORMAT. m is determined by the mygnitude of the quantity
to be printed The minus sign is printed only if the quantity is negative,

If there is enough room, a zero is added to the left of the decimal ot there are no other
dyuts there. Any additional positions are filled with blanks trom the left,
¥
For WRITE statements with F FORMAT, the quantity printed is:

n.h_l‘\_blitcc
n

Mhe manus as printed only i the quantity is negative. One significant digit is pri.ted to the
left of the decimal point. This is O it the quantity is 0. n is taken from the FORMAT item.

For both F and E FORMAT items, it the field length is msufticient, then asterisks are
printed and an error is sent.

F.S AFORMATITEMS

A Tormat items are used for CHARACTER data only. They take the form.
An
where n s the tickd length,

For READ statements, if the field length n is greater than the declared maximum length
of the vanable, the lettmost characters of the field are selected. Otherwise, the current
length of the CHARACTER variable is s2t to the tield length,

For WRITE statements, if the field length written is greater than the current length of
the variable, then blanks are added to the lett. Otherwise, the leftmost characters are written
to till the field.

E.6 FORMAT 1,0 WITH BIT VARIABLES

There s no FORMAT item specitically tor BUT variables. Instead, the BIT and CHAR-
ACTER conversion functions may be employed with CHARACTER variables (see Section
130,

P
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% For example:

DECLARE BITS BIT(8) INITIAL HEX ‘1F’;

i WRITE(6) CHARACTER $(@BIT) (BITS) IN ‘AS8";
i . produces:

00011111

For READ statements, BIT values must be read into CHARACTER variables and the
BIT conversion function applied.

o Dt e Sl A TR 2 R SRS e R

E.7 U FORMAT ITEMS

U (undefined) FORMAT items are used for INTEGER, SCALAR, and CHARACTER.
They take the form:

Data Type Interpretation of Un

CHARACTER An .

INTEGER In )

SCALAR End where d=n--7 ‘
For example: :

: DECLARE ARRAY(10.2) INTEGER, HEIGHT-AND-WEIGHT;
‘ WRITE(6) (‘HEIGHT''WEIGHT' HEIGHT-AND-WEIGHT)

E IN U7/, :
'; would produce a table such as:
HEIGHT  WEIGHT 4
\ 61 120
i 70 152 :
‘ . [
: 56 108 i
; H
ES X FORMAT ITEMS ¢

X FORMAT items are used to skip columns on input and output ;

The form: '
Xn i

s is equivalent to TAB(n). 2
-k %
4
%
4
3%

;

i
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E.9 FORMAT QUOTE STRINGS
FORMAT quote strings are used for constant character output. They have the form:
“eceee™ or Ceeeed”
where ¢ is a character
For example:
WRITE(6) ANS IN ‘ “ANSWER="12"
would produce:
ANSWER=21
E.10 P FORMAT ITEMS

There is a ‘Picture” FORMAT capability which is very usetul for mixing character and
numeric output data and specifying column alignments,

WRITE(6) ANS IN ‘P THE ANSWER IS $$8.8".
would produce:

THE ANSWER IS 87.2
another example:

WRITE(6) (NO,ARGI ARG ARGL1+Y)
IN 'P TEST $§$: §.§ + §.3 = $8.3";

would produce:
TEST 22: 48 + 53 = 10.1
The P Format item runs from the P to the first .’ or */* encountered, or to the end of

the FORMAT character string. All characters are printed except for S and *+°. These are
used to define numevic ficlds for INTEGER und SCALAR data. Such ficlds take the forms:

A

$83.
$85.558
$85.58%488

where *." placed the decimal and » places an exponent.
For READ statements, consecutive ‘$°, *.*, and *»* define a ficld of the same length.

Other characters cause corresponding columins to be skipped. Decimals in the input ficld
take precedence over decimals in the FORMAT.
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+29
(] 610
i} 9-16

ABS 3.5, A1
ABVAL 35, A4
ACCESS 118
addition 2-3, 1.5, 3-20
AFTER 126
aggregate 33
ALIGNED 9-19
AND 43,4.16,1-2, 132
ARCOS A-3
ARCOSH A-3
ARCSIN A3
ARCSINH A3
ARCTAN A-3,32
ARCTANH A-3
ARCTANZ A.3
arguments 7-7, 712
ARRAY 6-1
arrays 1-1,6:1
of boolean 6-19
multidimensional 6.5
arrayed expression 6-10
Assembly Language 1-1
assignments 2-15
ASSIGN parameters 7-10,9-19
asterisks (*) 2-15
AT (armays) 138
AT (real-time) 12.7,128
attributes 2.3, 211
AUTOMATIC 7-14,7-15,11-18

BIN 134
BIT 1-2,4-16,131,136
bit strings 4-18, 8.5, 13.1
length of 13-2
blanks 2-3
block structur 11.7
BOOLEAN 1-2,4.16, 4-20, 13-1
branching 4-20
BY 52

CALL 7-10
CANCEL 1246, 1217
CASE 420

CAT 8.12

A TIE T

INDEX

Index

CEILING 34, A-]
channels 2-5, 2-10, 8.1
CHARACTER 8.12
Character Shaping Function 8-15,13.7
character strings 8-12
CLOCKTIME A%
CLOSE 2.5
COLUMN 8+6.88
columns 2-§
comments 2-1,2-2
common blocks 1.1
comparisons 4-19,4.20
compilation unit 11-1
compiler 14
compiler directives 84
components 3.3
COMPOOL 11§
compool 11-1,11.5
compound statements 4.]
concatenation 8-12
bit 132
comsub 11.3
CONSTANT 24,2.12
conversions 2:16
COS A3
COSH A-3
DATE A8
DEC 13.7
DECLARE 1-2
group 2-1
simple 2-t1
factored 2-11
compound 2-11
dsfault tab 8.3
DENSE 9.18,9-2t
DET 3.5, A4
DEVICE directive 84
DIV A-l
division 2.3, 3-20
dollar sign ($) 3-7
DOUBLE 3.16, 3-17
DO 49
CASE 4.20,4.21
FOR 5.1
FOR (discrete) 5-6
UNTIL 5.1,58
WHILE §-1, 5.7
dynamic storage allocation 1.3

EBCDIC 138
element 2-13
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1-2 Index

ELSE 4.1,44
END 49,5.1
EQUATE EXTERNAL 13.23
ERRGRP 10-14
ERRNUM 104
ERROR 10-}
emor 10-1
codes 104
handler 10-5
group 10-§
recovery 10-1,10.7
deactivation of 10-5, 10-8
ifo 104
EVENT 128
event variables 12.9
EVERY 125,126
EXCLUSIVE 1117
EXIT 54,511
EXP A-3
EXTERNAL 116,11.10

FALSE 4.16
FILE 8.-1,9-19
file 8-21
address 8.21
expression 8:2)
number 8-21
random access 8-21
fixed point 3-19, 14-1
fixup 101
restoration 10-6
floating point 3-19
FLOOR 34, A:}
FOR 5.1
formats
1/0 E-I
A format E4
E format E-2
F format E-2
1 format E-2
P format E-3
U format E-4
X torrat E-§
multiple line 2.9
single line 2.9
FORTRAN 1-1
FSIM 1.3, 14
Function 7+
functions 7-1, 1i-1
builtin 3.1,33
invocations 3-19
of artays 6-22
user defined 7.1

GOTO 1-1,1-2,4-2,4-11,4-22, 51

HEX 134
hooks 1-3

identatter 2.1, 2-3, 5-19
IF 4.1, 4.2,44,4.20
IGNORE 106

IN 127,128
INCLUDE 114
INDEX A-7

indexing 13-12
indirection 13-12
INITIAL 2.12
INTEGER 2-1}
integers 1-1,24
INVERSE 3.5, A4
o 1-3, 14, 8.1

Yo control functions 8-6
i/o errors 104

job control language 8-1
keywords 1-3, 2.3

labels 23
LATCHED ' 2.10
LENGTH 8-17 A7
library routines 3.1
LINE 86,88
fines 22
lists 13.15
listing
compiler 29
source 29
literals 2.3, 3-19
LIUST A-7
LOCK 11-15,11-16
locked dats 11-15
LOG A3

machine language 1-1
macros 14

macro names 3-13
mantissa 3-16
MATRIX 33
MATRIX F 14§
matrix 1.1, 2:12,2.13
MAX A-S

MIDVAL A-l

MIN A5

MOD 3-S5, A-1



multiplication 1.3, 2.5, 320
crogs 1.3

multi-programming 11.13

NAME 9.19, 13.13

name variables 13.11
declaring 13-13
disadvantage 13.14
initializing 13.14
referencing 13-14

NASA 1.1

negation 320

NEXTIME A-8

NONHAL 7-14, 715

NORMALIZE 14, A-8

NORMCOUNT 14-6, A9

NOT 1.2,48,433,4.16, 132

NULL 13.14

object module 1-3

OCT 134,137

ODD A-2

OFF ERROR 108, 10-10
ON 128

operators 2-3

OR 1-2,4.3,4-16, 132

packing 13.5
PAGE 8,838
PAGED 84
parameters 7-7, 7-12
partition subscript 3.8
percent macros 13-20
PU1 13
pointer value 13.18
precedence
operator 26
expression 3-19
operations 3-20
precision 3.15
specifier 3-18
PRIO A8
PRIORITY 12.5
PROCEDURE 7.10
process priority 12-3
process procedures 79, 111
process queues 12.5
PROD A.$
product
dot 1.3,2.8,3.20
cross 13,28
matrix 2.8
inner 3.20
vector matrix 28
vector outer 2.8

Index 1.3

scalar 320 .
PROGRAM 2.1

queues 13.15

RANDOM A8
RANDOMG AY

RUAD 2.16,2.1,8.1, 89
READALL 8.),8-19

real 1.1

real-time 141, 1240
recursion 1.3
REENTRANT 11.17
regster 1S

REMAINDLR A-2
REPFAT 4.22,5.11
REPEAT AFTER 124
REPEAT EVERY 2.1, 125,126
repetition factor 214, 2.15
REPLACE 3.12, 8.2
RESET 12.11,12.02
RETURN 4.22.5.3,7.2, 7.9
RIGID 9.20, 9.2}

RJUST A.7

ROUND 34

rounding 34

RUNTIME A9

SCALAR .11
walas 24
scaling
vector 28
nmatnx 28
fixed 14.2
SCHEDULE 12.1, 122, 12-12
fcoping rules 7.13, 11.7
SEND ERROR 10-12
SET 12.11,12.12
shaping functions 3.2, 34, 61, 136
CHARACTER &.15, 13.7
FIXED 144
sharp sign (#) 2.1$, 3.9
SHL A9

SHR A9
SIGN A.2
SIGNAL 128
SIGNUM A.2
SIN A7,32
SINGLE 3.17
SINH A9
SIZE A9
SKIP 86,88
source J-]
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AT

R 4
F3

I-4 Index

Space Shuttle 1.1
SQRT A4.3.2
STATIC 7-1§
STRUCTURE A-2
structures 9-1
compuonents V.11
cepiness 9412
copiness specifier 9 13
declaration 9.3
matching 9-11
muiti-copied 9 12
template 9-2. 9%
termmals 9-6
unquabified 9-21,9.22
SUBBIT 138
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SYSTEM 107
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TAB 84, 8-8
TAN A4

TANH A4
TASK 11-11
tashs 110240112
template 114

TEMPORARY 4:11,4.12, 5.1
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THEN 4.1, 44

TO S
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TRACE 3.5, A4

TRANSFER
conditional 422
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TRANSPOSF 3.5, A4

TRIM 8-13

TRUL 4-16

TRUNCATF 34

UNIT 3.5 A4

UNPAGED 84

UNTIL 127,129, 12.10
update block 11-15,11-17
UPDATE PRIORITY 12-16

variable type 29
VECTOR 2-12
VECTORF 14§

vector 11,213
vector-matrix product 28
vecior outer product 28
vector shaping function
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WHILF §.7
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XOR 4-17, A6



